GIScience - Laser Scanning - LiDAR Research Group - Bernhard Höfle

Publications - Bernhard Hoefle

QuickSearch:   Matching entries: 0.      



Year: 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004

Reviewed Journal Articles are highlighted!


2017

top
[181] Bechtold, S., Hämmerle, M. & Höfle, B. (2017): The Heidelberg LiDAR Operations Simulator HELIOS as a Supporting Tool for Capturing and Preserving Cultural Heritage. In: 37. Wissenschaftlich-Technische Jahrestagung der DGPF. Würzburg, Germany, pp. 1-2.
BibTeX:
@inproceedings{Bechtold2017,
  author = {Bechtold, S. and Hämmerle, M. and Höfle, B.},
  title = {The Heidelberg LiDAR Operations Simulator HELIOS as a Supporting Tool for Capturing and Preserving Cultural Heritage},
  booktitle = {37. Wissenschaftlich-Technische Jahrestagung der DGPF},
  year = {2017},
  pages = {1--2},
  url = {http://www.dgpf.de/src/tagung/jt2017/proceedings/start.html}
}
[180] Ghamisi, P. & Höfle, B. (2017): LiDAR Data Classification Using Extinction Profiles and a Composite Kernel Support Vector Machine. IEEE Geoscience and Remote Sensing Letters. Vol. 14 (5), pp. 659-663.
BibTeX:
@article{Ghamisi2017,
  author = {Ghamisi, P. and Höfle, B.},
  title = {LiDAR Data Classification Using Extinction Profiles and a Composite Kernel Support Vector Machine},
  journal = {IEEE Geoscience and Remote Sensing Letters},
  year = {2017},
  volume = {14},
  number = {5},
  pages = {659--663},
  url = {https://doi.org/10.1109/LGRS.2017.2669304},
  doi = {https://doi.org/10.1109/LGRS.2017.2669304}
}
[179] Ghamisi, P., Zhu, X. & Höfle, B. (2017): Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. Vol. 10 (6), pp. 3011-3024.
BibTeX:
@article{Ghamisi2017a,
  author = {Ghamisi, P. and Zhu, X. and Höfle, B.},
  title = {Hyperspectral and LiDAR Data Fusion Using Extinction Profiles and Deep Convolutional Neural Network},
  journal = {IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing},
  year = {2017},
  volume = {10},
  number = {6},
  pages = {3011--3024},
  url = {https://doi.org/10.1109/JSTARS.2016.2634863},
  doi = {https://doi.org/10.1109/JSTARS.2016.2634863}
}
[178] Griesbaum, L., Marx, S. & Höfle, B. (2017): Direct local building inundation depth determination in 3D point clouds generated from user-generated flood images. Natural Hazards and Earth System Sciences. Vol. 17 (7), pp. 1191-1201.
BibTeX:
@article{Griesbaum2017,
  author = {Griesbaum, L. and Marx, S. and Höfle, B.},
  title = {Direct local building inundation depth determination in 3D point clouds generated from user-generated flood images},
  journal = {Natural Hazards and Earth System Sciences},
  year = {2017},
  volume = {17},
  number = {7},
  pages = {1191--1201},
  url = {https://www.nat-hazards-earth-syst-sci.net/17/1191/2017/},
  doi = {https://doi.org/10.5194/nhess-17-1191-2017}
}
[177] Hämmerle, M., Lukač, N., Chen, K.-C., Koma, Z., Wang, C.-K., Anders, K. & Höfle, B. (2017): Simulating Various Terrestrial and UAV LiDAR Scanning Configurations for Understory Forest Structure Modelling. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. IV-2/W4, pp. 59-65.
BibTeX:
@inproceedings{Haemmerle2017,
  author = {Hämmerle, M. and Lukač, N. and Chen, K.-C. and Koma, Zs. and Wang, C.-K. and Anders, K. and Höfle, B.},
  title = {Simulating Various Terrestrial and UAV LiDAR Scanning Configurations for Understory Forest Structure Modelling},
  booktitle = {ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2017},
  volume = {IV-2/W4},
  pages = {59--65},
  url = {https://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/IV-2-W4/59/2017/},
  doi = {https://doi.org/10.5194/isprs-annals-IV-2-W4-59-2017}
}
[176] Höfle, B. (2017): Messen und Verstehen der Welt durch die Geoinformatik am Beispiel von Naturgefahren. In: Schweiker, M., Hass, J., Novokhatko, A. & Halbleib, R.: Messen und Verstehen in der Wissenschaft: Interdisziplinäre Ansätze, pp. 207-223. Springer Fachmedien Wiesbaden.
BibTeX:
@inbook{Hoefle2017,
  author = {Höfle, B.},
  editor = {Schweiker, M. and Hass, J. and Novokhatko, A. and Halbleib, R.}, 
  title = {Messen und Verstehen der Welt durch die Geoinformatik am Beispiel von Naturgefahren},
  booktitle = {Messen und Verstehen in der Wissenschaft: Interdisziplinäre Ansätze},
  publisher = {Springer Fachmedien Wiesbaden},
  year = {2017},
  pages = {207--223},
  url = {http://dx.doi.org/10.1007/978-3-658-18354-7_14},
  doi = {http://dx.doi.org/10.1007/978-3-658-18354-7_14}
}
[175] Höfle, B., Herfort, B., Kaibel, M., Eberlein, S. & Hillen, F. (2017): Citizen Science in Schulen: Entwicklung von 3D-MicroMapping zur Klassifikation von 3D-Punktwolken. In: 37. Wissenschaftlich-Technische Jahrestagung der DGPF. Würzburg, Germany, pp. 1-1.
BibTeX:
@inproceedings{Hoefle2017a,
  author = {Höfle, B. and Herfort, B. and Kaibel, M. and Eberlein, S. and Hillen, F.},
  title = {Citizen Science in Schulen: Entwicklung von 3D-MicroMapping zur Klassifikation von 3D-Punktwolken},
  booktitle = {37. Wissenschaftlich-Technische Jahrestagung der DGPF},
  year = {2017},
  pages = {1--1},
  url = {http://www.dgpf.de/src/tagung/jt2017/proceedings/start.html}
}
[174] Höfle, B., Klonner, C., Marx, S. & Usón, T. (2017): Neogeographie einer Digitalen Erde: Geo-Informatik als methodische Brücke in der interdisziplinären Naturgefahrenanalyse (NEOHAZ). In: Heidelberger Akademie der Wissenschaften: Jahrbuch 2016, pp. 237-240.
BibTeX:
@inbook{Hoefle2017b,
  author = {Höfle, B.. and Klonner, C. and Marx, S. and Usón, T.},
  editor = {Heidelberger Akademie der Wissenschaften}, 
  title = {Neogeographie einer Digitalen Erde: Geo-Informatik als methodische Brücke in der interdisziplinären Naturgefahrenanalyse (NEOHAZ)},
  booktitle = {Jahrbuch 2016},
  year = {2017},
  pages = {237--240},
  url = {http://www.haw.uni-heidelberg.de/publikationen/publikationen.de.html?suchen?feld1=titel&text1=Jahrbuch%20der%20Heidelberger%20Akademie%20der%20Wissenschaften}
}
[173] Klonner, C., Eckle, M., Usón, T. & Höfle, B. (2017): Quality Improvement of Remotely Volunteered Geographic Information via Country-Specific Mapping Instructions. In: Proceedings of ISCRAM 2017 - 14th International Conference on Information Systems for Crisis Response And Management. Albi, France, pp. 939-947.
BibTeX:
@inproceedings{Klonner2017,
  author = {Klonner, C. and Eckle, M and Usón, T. and Höfle, B.},
  title = {Quality Improvement of Remotely Volunteered Geographic Information via Country-Specific Mapping Instructions},
  booktitle = {Proceedings of ISCRAM 2017 - 14th International Conference on Information Systems for Crisis Response And Management},
  year = {2017},
  pages = {939--947},
  url = {https://iscram2017.mines-albi.fr/}
}
[172] Klopfer, F., Hämmerle, M. & Höfle, B. (2017): Assessing the Potential of a Low-Cost 3-D Sensor in Shallow-Water Bathymetry. IEEE Geoscience and Remote Sensing Letters. Vol. 14 (8), pp. 1388-1392.
BibTeX:
@article{Klopfer2017,
  author = {F. Klopfer and M. Hämmerle and B. Höfle},
  title = {Assessing the Potential of a Low-Cost 3-D Sensor in Shallow-Water Bathymetry},
  journal = {IEEE Geoscience and Remote Sensing Letters},
  year = {2017},
  volume = {14},
  number = {8},
  pages = {1388--1392},
  url = {https://doi.org/10.1109/LGRS.2017.2713991},
  doi = {https://doi.org/10.1109/LGRS.2017.2713991}
}
[171] Lin, T.-P., Lin, F.-Y., Wu, P.-R., Hämmerle, M., Höfle, B., Bechtold, S., Hwang, R.-L. & Chen, Y.-C. (2017): Multiscale Analysis and Reduction Measures of Urban Carbon Dioxide Budget Based on Building Energy Consumption. Energy and Buildings. Vol. 153, pp. 356-367.
BibTeX:
@article{Lin2017,
  author = {Tzu-Ping Lin and Feng-Yi Lin and Pei-Ru Wu and Martin Hämmerle and Bernhard Höfle and Sebastian Bechtold and Ruey-Lung Hwang and Yu-Cheng Chen},
  title = {Multiscale Analysis and Reduction Measures of Urban Carbon Dioxide Budget Based on Building Energy Consumption},
  journal = {Energy and Buildings},
  year = {2017},
  volume = {153},
  pages = {356--367},
  url = {http://dx.doi.org/10.1016/j.enbuild.2017.07.084},
  doi = {http://dx.doi.org/10.1016/j.enbuild.2017.07.084}
}
[170] Marx, S., Anders, K., Antonova, S., Beck, I., Boike, J., Marsh, P., Langer, M. & Höfle, B. (2017): Terrestrial Laser Scanning for Quantifying Small-Scale Vertical Movements of the Ground Surface in Artic Permafrost Regions. Earth Surface Dynamics Discussions. Vol. 2017, pp. 1-31.
BibTeX:
@article{Marx2017,
  author = {Marx, S. and Anders, K. and Antonova, S. and Beck, I. and Boike, J. and Marsh, P. and Langer, M. and Höfle, B.},
  title = {Terrestrial Laser Scanning for Quantifying Small-Scale Vertical Movements of the Ground Surface in Artic Permafrost Regions},
  journal = {Earth Surface Dynamics Discussions},
  year = {2017},
  volume = {2017},
  pages = {1--31},
  url = {http://dx.doi.org/10.5194/esurf-2017-49},
  doi = {http://dx.doi.org/10.5194/esurf-2017-49}
}
[169] Profe, J. & Höfle, B. (2017): Detectability and geomorphometry of tufa barrages in a small forested karstic river using airborne LiDAR topo-bathymetry. In: Geophysical Research Abstracts. Vol. 19(EGU2017-9130), pp. 1-1.
BibTeX:
@inproceedings{Profe2017,
  author = {Profe, J. and Höfle, B.},
  title = {Detectability and geomorphometry of tufa barrages in a small forested karstic river using airborne LiDAR topo-bathymetry},
  booktitle = {Geophysical Research Abstracts},
  year = {2017},
  volume = {19},
  number = {EGU2017-9130},
  pages = {1--1},
  url = {http://meetingorganizer.copernicus.org/EGU2017/EGU2017-9130.pdf}
}
[168] Usón, T., Klonner, C., Marx, S., Hölscher, M. & Höfle, B. (2017): OSM Critical Infrastructure in Chile: Analysing the Relation Between OSM Data Completeness and Territorial Vulnerability. In: 37. Wissenschaftlich-Technische Jahrestagung der DGPF. Würzburg, Germany, pp. 1-1.
BibTeX:
@inproceedings{Uson2017,
  author = {Usón, T. and Klonner, C. and Marx, S. and Hölscher, M. and Höfle, B.},
  title = {OSM Critical Infrastructure in Chile: Analysing the Relation Between OSM Data Completeness and Territorial Vulnerability},
  booktitle = {37. Wissenschaftlich-Technische Jahrestagung der DGPF},
  year = {2017},
  pages = {1--1},
  url = {http://www.dgpf.de/src/tagung/jt2017/proceedings/start.html}
}


2016

top
[167] Anders, K., Hämmerle, M., Miernik, G., Drews, T., Escalona, A., Townsend, C. & Höfle, B. (2016): 3D Geological Outcrop Characterization: Automatic Detection of 3D Planes (Azimuth and Dip) Using LiDAR Point Clouds. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. III-5, pp. 105-112.
BibTeX:
@inproceedings{Anders2016,
  author = {Anders, K. and Hämmerle, M. and Miernik, G. and Drews, T. and Escalona, A. and Townsend, C. and Höfle, B.},
  title = {3D Geological Outcrop Characterization: Automatic Detection of 3D Planes (Azimuth and Dip) Using LiDAR Point Clouds},
  booktitle = {ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2016},
  volume = {III-5},
  pages = {105--112},
  url = {http://dx.doi.org/10.5194/isprs-annals-III-5-105-2016},
  doi = {http://dx.doi.org/10.5194/isprs-annals-III-5-105-2016}
}
[166] Bechtold, S., Hämmerle, M. & Höfle, B. (2016): Simulated Full-Waveform Laser Scanning of Outcrops for Development of Point Cloud Analysis Algorithms and Survey Planning: An Application of the HELIOS Lidar Simulation Framework. In: Proceedings of 2nd Virtual Geoscience Conference. Bergen, Norway, pp. 57-58.
BibTeX:
@inproceedings{Bechtold2016,
  author = {Bechtold, S.. and Hämmerle, M. and Höfle, B.},
  title = {Simulated Full-Waveform Laser Scanning of Outcrops for Development of Point Cloud Analysis Algorithms and Survey Planning: An Application of the HELIOS Lidar Simulation Framework},
  booktitle = {Proceedings of 2nd Virtual Geoscience Conference},
  year = {2016},
  pages = {57--58},
  url = {http://virtualoutcrop.com/vgc2016}
}
[165] Bechtold, S. & Höfle, B. (2016): HELIOS: A Multi-Purpose LiDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. III-3, pp. 161-168.
BibTeX:
@inproceedings{Bechtold2016a,
  author = {Bechtold, S. and Höfle, B.},
  title = {HELIOS: A Multi-Purpose LiDAR Simulation Framework for Research, Planning and Training of Laser Scanning Operations with Airborne, Ground-Based Mobile and Stationary Platforms},
  booktitle = {ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2016},
  volume = {III-3},
  pages = {161--168},
  url = {http://dx.doi.org/10.5194/isprs-annals-III-3-161-2016@Articleisprs-annals-III-3-185-2016,
Title = URBAN TREE CLASSIFICATION USING FULL-WAVEFORM AIRBORNE LASER SCANNING,
Author = Koma, Zs. and Koenig, K. and Höfle, B.,
Journal = ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,
Pages = 185--192,
Volume = III-3,
Year = 2016,

Doi = 10.5194/isprs-annals-III-3-185-2016,
Url = http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-3/185/2016/

@Articleisprs-annals-III-3-185-2016,
Title = URBAN TREE CLASSIFICATION USING FULL-WAVEFORM AIRBORNE LASER SCANNING,
Author = Koma, Zs. and Koenig, K. and Höfle, B.,
Journal = ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences,
Pages = 185--192,
Volume = III-3,
Year = 2016,

Doi = 10.5194/isprs-annals-III-3-185-2016,
Url = http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-3/185/2016/
}, doi = {http://dx.doi.org/10.5194/isprs-annals-III-3-161-2016} }

[164] Beck, I., Marx, S., Boike, J. & Höfle, B. (2016): PermaSAR – Improving TanDEM-X D-InSAR techniques for the detection of small-scale vertical movements in arctic permafrost regions. In: XI. International Conference on Permafrost (ICOP). Potsdam, Germany, pp. 862-862.
BibTeX:
@inproceedings{Beck2016,
  author = {Beck, I. and Marx, S. and Boike, J. and Höfle, B.},
  title = {PermaSAR – Improving TanDEM-X D-InSAR techniques for the detection of small-scale vertical movements in arctic permafrost regions},
  booktitle = {XI. International Conference on Permafrost (ICOP)},
  year = {2016},
  pages = {862--862},
  url = {http://icop2016.org/}
}
[163] Crommelinck, S. & Höfle, B. (2016): Simulating an Autonomously Operating Low-Cost Static Terrestrial LiDAR for Multitemporal Maize Crop Height Measurements. Remote Sensing. Vol. 8 (3), pp. 1-17.
Abstract: In order to optimize agricultural processes, near real-time spatial information about in-field variations, such as crop height development (i.e., changes over time), is indispensable. This development can be captured with a LiDAR system. However, its applicability in precision agriculture is often hindered due to high costs and unstandardized processing methods. This study investigates the potential of an autonomously operating low-cost static terrestrial laser scanner (TLS) for multitemporal height monitoring of maize crops. A low-cost system is simulated by artificially reducing the point density of data captured during eight different campaigns. The data were used to derive and assess crop height models (CHM). Results show that heights calculated with CHM based on the unreduced point cloud are accurate when compared to manually measured heights (mean deviation = 0.02 m, standard deviation = 0.15 m, root mean square error (RMSE) = 0.16 m). When reducing the point cloud to 2% of its original size to simulate a low-cost system, this difference increases (mean deviation = 0.12 m, standard deviation = 0.19 m, RMSE = 0.22 m). We found that applying the simulated low-cost TLS system in precision agriculture is possible with acceptable accuracy up to an angular scan resolution of 8 mrad (i.e., point spacing of 80 mm at 10 m distance). General guidelines for the measurement set-up and an automatically executable method for CHM generation and assessment are provided and deserve consideration in further studies.
BibTeX:
@article{Crommelinck2016,
  author = {Crommelinck, Sophie and Höfle, Bernhard},
  title = {Simulating an Autonomously Operating Low-Cost Static Terrestrial LiDAR for Multitemporal Maize Crop Height Measurements},
  journal = {Remote Sensing},
  year = {2016},
  volume = {8},
  number = {3},
  pages = {1--17},
  url = {http://www.mdpi.com/2072-4292/8/3/205},
  doi = {http://dx.doi.org/10.3390/rs8030205}
}
[162] Eitel, J.U., Höfle, B., Vierling, L.A., Abellán, A., Asner, G.P., Deems, J.S., Glennie, C.L., Joerg, P.C., LeWinter, A.L., Magney, T.S., Mandlburger, G., Morton, D.C., Müller, J. & Vierling, K.T. (2016): Beyond 3-D: The New Spectrum of LiDAR Applications for Earth and Ecological Sciences. Remote Sensing of Environment. Vol. 186, pp. 372-392.
BibTeX:
@article{Eitel2016,
  author = {Jan U.H. Eitel and Bernhard Höfle and Lee A. Vierling and Antonio Abellán and Gregory P. Asner and Jeffrey S. Deems and Craig L. Glennie and Philip C. Joerg and Adam L. LeWinter and Troy S. Magney and Gottfried Mandlburger and Douglas C. Morton and Jörg Müller and Kerri T. Vierling},
  title = {Beyond 3-D: The New Spectrum of LiDAR Applications for Earth and Ecological Sciences},
  journal = {Remote Sensing of Environment},
  year = {2016},
  volume = {186},
  pages = {372--392},
  url = {http://dx.doi.org/10.1016/j.rse.2016.08.018},
  doi = {http://dx.doi.org/10.1016/j.rse.2016.08.018}
}
[161] Hämmerle, M. & Höfle, B. (2016): Direct Derivation of Maize Plant and Crop Height from Low-Cost Time-of-Flight Camera Measurements. Plant Methods. Vol. 12 (1), pp. 50.
Abstract: In agriculture, information about the spatial distribution of crop height is valuable for applications such as biomass and yield estimation, or increasing field work efficiency in terms of fertilizing, applying pesticides, irrigation, etc. Established methods for capturing crop height often comprise restrictions in terms of cost and time efficiency, flexibility, and temporal and spatial resolution of measurements. Furthermore, crop height is mostly derived from a measurement of the bare terrain prior to plant growth and measurements of the crop surface when plants are growing, resulting in the need of multiple field campaigns. In our study, we examine a method to derive crop heights directly from data of a plot of full grown maize plants captured in a single field campaign. We assess continuous raster crop height models (CHMs) and individual plant heights derived from data collected with the low-cost 3D camera Microsoft® Kinect® for Xbox Onetexttrademark based on a comprehensive comparison to terrestrial laser scanning (TLS) reference data.
BibTeX:
@article{Haemmerle2016,
  author = {Hämmerle, Martin and Höfle, Bernhard},
  title = {Direct Derivation of Maize Plant and Crop Height from Low-Cost Time-of-Flight Camera Measurements},
  journal = {Plant Methods},
  year = {2016},
  volume = {12},
  number = {1},
  pages = {50},
  url = {http://dx.doi.org/10.1186/s13007-016-0150-6},
  doi = {http://dx.doi.org/10.1186/s13007-016-0150-6}
}
[160] Hämmerle, M., Schütt, F. & Höfle, B. (2016): Terrestrial and Unmanned Aerial System Imagery for Deriving Photogrammetric Three-Dimensional Point Clouds and Volume Models of Mass Wasting Sites. Journal of Applied Remote Sensing. Vol. 10 (2), pp. 026029.
Abstract: Abstract. 
Three-dimensional (3-D) geodata of mass wasting sites are important to model surfaces, volumes, and their changes over time. With a photogrammetric approach commonly known as structure from motion, 3-D point clouds can be derived from image collections in a straightforward way. The quality of point clouds covering a quarry dump derived from terrestrial and aerial imagery is compared and assessed. A comprehensive set of quality indicators is calculated and compared to surveyed reference data and to a terrestrial LiDAR point cloud. The examined indicators are completeness of coverage, point density, vertical accuracy, multiscale point cloud distance, scaling accuracy, and dump volume. It is found that the photogrammetric datasets generally represent the examined dump well with, for example, an area coverage of up to 90% and 100% in case of terrestrial and aerial imagery, respectively, a maximum scaling difference of 0.62%, and volume estimations reaching up to 100% of the LiDAR reference. Combining the advantages of 3-D geodata derived from terrestrial (high detail, accurate volume calculation even with a small number of input images) and aerial images (high coverage) can be a promising method to further improve the quality of 3-D geodata derived with low-cost approaches.
BibTeX:
@article{Haemmerle2016a,
  author = {Hämmerle, Martin and Schütt, Fabian and Höfle, Bernhard},
  title = {Terrestrial and Unmanned Aerial System Imagery for Deriving Photogrammetric Three-Dimensional Point Clouds and Volume Models of Mass Wasting Sites},
  journal = {Journal of Applied Remote Sensing},
  year = {2016},
  volume = {10},
  number = {2},
  pages = {026029},
  url = {http://dx.doi.org/10.1117/1.JRS.10.026029},
  doi = {http://dx.doi.org/10.1117/1.JRS.10.026029}
}
[159] Hillen, F., Gerdes, M., Herfort, B. & Höfle, B. (2016): 3D-MicroMapping: Crowdsourcing zur Klassifikation von 3D-Geodaten. AGIT - Journal für Angewandte Geoinformatik. Vol. 2, pp. 156-161.
BibTeX:
@article{Hillen2016,
  author = {Hillen, F. and Gerdes, M. and Herfort, B. and Höfle, B.},
  title = {3D-MicroMapping: Crowdsourcing zur Klassifikation von 3D-Geodaten},
  journal = {AGIT - Journal für Angewandte Geoinformatik},
  year = {2016},
  volume = {2},
  pages = {156--161},
  url = {http://dx.doi.org/10.14627/537622022},
  doi = {http://dx.doi.org/10.14627/537622022}
}
[158] Höfle, B., Canli, E., Schmitz, E., Crommelinck, S., Hoffmeister, D. & Glade, T. (2016): 4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR. In: Geophysical Research Abstracts. Vol. 18(EGU2016-11295-2), pp. 1-1.
BibTeX:
@inproceedings{Hoefle2016,
  author = {Höfle, B., and Canli, E. and Schmitz, E. and Crommelinck, S. and Hoffmeister, D. and Glade, T.},
  title = {4D Near Real-Time Environmental Monitoring Using Highly Temporal LiDAR},
  booktitle = {Geophysical Research Abstracts},
  year = {2016},
  volume = {18},
  number = {EGU2016-11295-2},
  pages = {1--1},
  url = {http://meetingorganizer.copernicus.org/EGU2016/posters/20152}
}
[157] Höfle, B., Klonner, C., Marx, S. & Usón, T. (2016): Neogeographie einer Digitalen Erde: Geo-Informatik als methodische Brücke in der interdisziplinären Naturgefahrenanalyse (NEOHAZ). In: Heidelberger Akademie der Wissenschaften: Jahrbuch 2015, pp. 271-274.
BibTeX:
@inbook{Hoefle2016a,
  author = {Höfle, B.. and Klonner, C. and Marx, S. and Usón, T.},
  editor = {Heidelberger Akademie der Wissenschaften}, 
  title = {Neogeographie einer Digitalen Erde: Geo-Informatik als methodische Brücke in der interdisziplinären Naturgefahrenanalyse (NEOHAZ)},
  booktitle = {Jahrbuch 2015},
  year = {2016},
  pages = {271--274},
  url = {http://www.haw.uni-heidelberg.de/md/haw/publikationen/jahrbuch_2015_www.pdf}
}
[156] Höfle, B. & Marx (2016): Partizipative 3D-Datenerfassung mit Smartphones in der Landwirtschaft - Ein Vergleich mit Terrestrischem Laserscanning. In: 36. Wissenschaftlich-Technische Jahrestagung der DGPF. Bern, Switzerland, pp. 1-1.
BibTeX:
@inproceedings{Hoefle2016b,
  author = {Höfle, B. and Marx},
  title = {Partizipative 3D-Datenerfassung mit Smartphones in der Landwirtschaft - Ein Vergleich mit Terrestrischem Laserscanning},
  booktitle = {36. Wissenschaftlich-Technische Jahrestagung der DGPF},
  year = {2016},
  pages = {1--1},
  url = {http://www.dgpf.de/src/tagung/jt2016/proceedings/sessions.html}
}
[155] Klonner, C., Marx, S., Usón, T. & Höfle, B. (2016): Risk Awareness Maps of Urban Flooding via OSM Field Papers- Case Study Santiago de Chile. In: Proceedings of the ISCRAM 2016 Conference. Rio de Janeiro, Brazil, pp. 1-14.
BibTeX:
@inproceedings{Klonner2016,
  author = {Klonner, C. and Marx, S. and Usón, T. and Höfle, B.},
  title = {Risk Awareness Maps of Urban Flooding via OSM Field Papers- Case Study Santiago de Chile},
  booktitle = {Proceedings of the ISCRAM 2016 Conference},
  year = {2016},
  pages = {1--14},
  url = {http://www.iscram2016.nce.ufrj.br/}
}
[154] Klonner, C., Marx, S., Usón, T., Porto de Albuquerque, J. & Höfle, B. (2016): Volunteered Geographic Information in Natural Hazard Analysis: A Systematic Literature Review of Current Approaches with a Focus on Preparedness and Mitigation. ISPRS International Journal of Geo-Information. Vol. 5 (7), pp. 103.
Abstract: With the rise of new technologies, citizens can contribute to scientific research via Web 2.0 applications for collecting and distributing geospatial data. Integrating local knowledge, personal experience and up-to-date geoinformation indicates a promising approach for the theoretical framework and the methods of natural hazard analysis. Our systematic literature review aims at identifying current research and directions for future research in terms of Volunteered Geographic Information (VGI) within natural hazard analysis. Focusing on both the preparedness and mitigation phase results in eleven articles from two literature databases. A qualitative analysis for in-depth information extraction reveals auspicious approaches regarding community engagement and data fusion, but also important research gaps. Mainly based in Europe and North America, the analysed studies deal primarily with floods and forest fires, applying geodata collected by trained citizens who are improving their knowledge and making their own interpretations. Yet, there is still a lack of common scientific terms and concepts. Future research can use these findings for the adaptation of scientific models of natural hazard analysis in order to enable the fusion of data from technical sensors and VGI. The development of such general methods shall contribute to establishing the user integration into various contexts, such as natural hazard analysis.
BibTeX:
@article{Klonner2016a,
  author = {Klonner, Carolin and Marx, Sabrina and Usón, Tomas and Porto de Albuquerque, Joao and Höfle, Bernhard},
  title = {Volunteered Geographic Information in Natural Hazard Analysis: A Systematic Literature Review of Current Approaches with a Focus on Preparedness and Mitigation},
  journal = {ISPRS International Journal of Geo-Information},
  year = {2016},
  volume = {5},
  number = {7},
  pages = {103},
  url = {http://dx.doi.org/10.3390/ijgi5070103},
  doi = {http://dx.doi.org/10.3390/ijgi5070103}
}
[153] Koenig, K. & Höfle, B. (2016): Full-Waveform Airborne Laser Scanning in Vegetation Studies - Review of Point Cloud and Waveform Features for Tree Species Classification. Forests. Vol. 7 (9), pp. 198.
Abstract: In recent years, small-footprint full-waveform airborne laser scanning has become readily available and established for vegetation studies in the fields of forestry, agriculture and urban studies. Independent of the field of application and the derived final product, each study uses features to classify a target object and to assess its characteristics (e.g., tree species). These laser scanning features describe an observable characteristic of the returned laser signal (e.g., signal amplitude) or a quantity of an object (e.g., height-width ratio of the tree crown). In particular, studies dealing with tree species classification apply a variety of such features as input. However, an extensive overview, categorization and comparison of features from full-waveform airborne laser scanning and how they relate to specific tree species are still missing. This review identifies frequently used full-waveform airborne laser scanning-based point cloud and waveform features for tree species classification and compares the applied features and their characteristics for specific tree species detection. Furthermore, limiting and influencing factors on feature characteristics and tree classification are discussed with respect to vegetation structure, data acquisition and processing.
BibTeX:
@article{Koenig2016,
  author = {Koenig, Kristina and Höfle, Bernhard},
  title = {Full-Waveform Airborne Laser Scanning in Vegetation Studies - Review of Point Cloud and Waveform Features for Tree Species Classification},
  journal = {Forests},
  year = {2016},
  volume = {7},
  number = {9},
  pages = {198},
  url = {http://www.mdpi.com/1999-4907/7/9/198},
  doi = {http://dx.doi.org/10.3390/f7090198}
}
[152] Koma, Z., Koenig, K. & Höfle, B. (2016): Urban Tree Classification Using Full-Waveform Airborne Laser Scanning. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. III-3, pp. 185-192.
BibTeX:
@inproceedings{Koma2016,
  author = {Koma, Zs. and Koenig, K. and Höfle, B.},
  title = {Urban Tree Classification Using Full-Waveform Airborne Laser Scanning},
  booktitle = {ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2016},
  volume = {III-3},
  pages = {185--192},
  url = {http://dx.doi.org/10.5194/isprs-annals-III-3-185-2016},
  doi = {http://dx.doi.org/10.5194/isprs-annals-III-3-185-2016}
}
[151] Koma, Z., Székely, B., Folly-Ritvay, Z., Skobrák, F., Koenig, K. & Höfle, B. (2016): Automated identification and geometrical features extraction of individual trees from Mobile Laser Scanning data in Budapest. In: Geophysical Research Abstracts. Vol. 18(EGU2016-10237-1), pp. 1-1.
BibTeX:
@inproceedings{Koma2016a,
  author = {Koma, Z. and Székely, B. and Folly-Ritvay, Z. and Skobrák, F and Koenig, K.. and Höfle, B.},
  title = {Automated identification and geometrical features extraction of individual trees from Mobile Laser Scanning data in Budapest},
  booktitle = {Geophysical Research Abstracts},
  year = {2016},
  volume = {18},
  number = {EGU2016-10237-1},
  pages = {1--1},
  url = {http://meetingorganizer.copernicus.org/EGU2016/posters/20152}
}
[150] Malinowski, R., Höfle, B., Koenig, K., Groom, G., Schwanghart, W. & Heckrath, G. (2016): Local-scale flood mapping on vegetated floodplains from radiometrically calibrated airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 119, pp. 267-279.
BibTeX:
@article{Malinowski2016,
  author = {Radosław Malinowski and Bernhard Höfle and Kristina Koenig and Geoff Groom and Wolfgang Schwanghart and Goswin Heckrath},
  title = {Local-scale flood mapping on vegetated floodplains from radiometrically calibrated airborne LiDAR data},
  journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
  year = {2016},
  volume = {119},
  pages = {267--279},
  url = {http://dx.doi.org/10.1016/j.isprsjprs.2016.06.009},
  doi = {http://dx.doi.org/10.1016/j.isprsjprs.2016.06.009}
}
[149] Marx, S., Hämmerle, M., Klonner, C. & Höfle, B. (2016): 3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment – A Comparison with Terrestrial Laser Scanning Data. PLoS ONE. Vol. 11 (4), pp. 1-22.
BibTeX:
@article{Marx2016,
  author = {Marx, S. and Hämmerle, M. and Klonner, C. and Höfle, B.},
  title = {3D Participatory Sensing with Low-Cost Mobile Devices for Crop Height Assessment – A Comparison with Terrestrial Laser Scanning Data},
  journal = {PLoS ONE},
  year = {2016},
  volume = {11},
  number = {4},
  pages = {1--22},
  url = {http://dx.doi.org/10.1371/journal.pone.0152839},
  doi = {http://dx.doi.org/10.1371/journal.pone.0152839}
}
[148] Pattee, A., Höfle, B. & Seitz, C. (2016): Integrative 3D Recording Methods of Historic Architecture - Burg Hohenecken from Southwest Germany. In: Digital Humanities 2016. Kraków, Poland, pp. 1-2.
BibTeX:
@inproceedings{Pattee2016,
  author = {Pattee, A. and Höfle, B. and Seitz, C.},
  title = {Integrative 3D Recording Methods of Historic Architecture - Burg Hohenecken from Southwest Germany},
  booktitle = {Digital Humanities 2016},
  year = {2016},
  pages = {1--2},
  url = {http://dh2016.adho.org/}
}
[147] Profe, J., Höfle, B., Hämmerle, M., Steinbacher, F., Yang, M.-S., Schröder-Ritzrau, A. & Frank, N. (2016): Characterizing Tufa Barrages in Relation to Channel Bed Morphology in a Small Karstic River by Airborne LiDAR Topo-Bathymetry. Proceedings of the Geologists' Association. Vol. 127 (6), pp. 664-675.
Abstract: Abstract Freshwater tufas in karstic environments denote an increasingly studied high-resolution terrestrial paleoclimate archive. Tufa morphology is, among other factors, climate-driven and sedimentary facies models are developed to ascribe present day environmental conditions to constrain sedimentary records of paleotufa. Therefore, knowledge about tufa morphology is needed but difficult to obtain due to the complex topo-bathymetry of tufa-bearing channel beds as a consequence of the complex nature of sedimentary processes shaping a patchy transition zone between land and water. Combined airborne small-footprint LiDAR topo-bathymetry (ALTB) is a new emerging remote sensing technique, which is applied here for the first time in a densely forested area to describe the morphology of a small tufa-bearing river (Kaisinger Brunnenbach) near Greding, Bavaria, Germany. We show that sub-metre footprint ALTB captures tufas of maximum total dam heights from 0.3 m up to 1.6 m. Based on a difference model of the channel bed inclusive tufas and the channel bed exclusive tufas, tufas are obtained as objects allowing the determination of maximum tufa height. Our results document that slope and openness as raster-based morphometric derivatives provide information about tufa orientation and morphology whereas longitudinal slope computed in two different window sizes enable a morphological channel bed characterization as well as the relation of tufa morphology to channel bed morphology. Hence, we demonstrate the suitability of ALTB to capture tufa barrages in a densely forested karstic river and suggest channel bed morphology is a crucial factor controlling tufa deposition and morphology.
BibTeX:
@article{Profe2016,
  author = {Jörn Profe and Bernhard Höfle and Martin Hämmerle and Frank Steinbacher and Mon-Shieh Yang and Andrea Schröder-Ritzrau and Norbert Frank},
  title = {Characterizing Tufa Barrages in Relation to Channel Bed Morphology in a Small Karstic River by Airborne LiDAR Topo-Bathymetry},
  journal = {Proceedings of the Geologists' Association},
  year = {2016},
  volume = {127},
  number = {6},
  pages = {664--675},
  url = {http://dx.doi.org/10.1016/j.pgeola.2016.10.004},
  doi = {http://dx.doi.org/10.1016/j.pgeola.2016.10.004}
}
[146] Rutzinger, M., Höfle, B., Lindenbergh, R., Oude Elberink, S., Pirotti, F., Sailer, R., Scaioni, M., Stötter, J. & Wujanz, D. (2016): Close-Range Sensing Techniques in Alpine Terrain. In: ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. III-6, pp. 15-22.
BibTeX:
@inproceedings{Rutzinger2016,
  author = {Rutzinger, M. and Höfle, B. and Lindenbergh, R. and Oude Elberink, S. and Pirotti, F. and Sailer, R. and Scaioni, M. and Stötter, J. and Wujanz, D.},
  title = {Close-Range Sensing Techniques in Alpine Terrain},
  booktitle = {ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2016},
  volume = {III-6},
  pages = {15--22},
  url = {http://dx.doi.org/10.5194/isprs-annals-III-6-15-2016},
  doi = {http://dx.doi.org/10.5194/isprs-annals-III-6-15-2016}
}
[145] Usón, T., Klonner, C. & Höfle, B. (2016): Using Participatory Geographic Approaches for Urban Flood Risk in Santiago de Chile: Insights from a Governance Analysis. Environmental Science & Policy. Vol. 66, pp. 62-72.
BibTeX:
@article{Uson2016,
  author = {T. Usón and C. Klonner and B. Höfle},
  title = {Using Participatory Geographic Approaches for Urban Flood Risk in Santiago de Chile: Insights from a Governance Analysis},
  journal = {Environmental Science & Policy},
  year = {2016},
  volume = {66},
  pages = {62--72},
  url = {http://dx.doi.org/10.1016/j.envsci.2016.08.002},
  doi = {http://dx.doi.org/10.1016/j.envsci.2016.08.002}
}


2015

top
[144] Canli, E., Höfle, B., Hämmerle, M., Thiebes, B. & Glade, T. (2015): Permanent 3D laser scanning system for an active landslide in Gresten (Austria). In: Geophysical Research Abstracts. Vol. 17(EGU2015-2885-2), pp. 1-1.
BibTeX:
@inproceedings{Canli2015,
  author = {Canli, E. and Höfle, B. and Hämmerle, M. and Thiebes, B. and Glade, T.},
  title = {Permanent 3D laser scanning system for an active landslide in Gresten (Austria)},
  booktitle = {Geophysical Research Abstracts},
  year = {2015},
  volume = {17},
  number = {EGU2015-2885-2},
  pages = {1--1},
  url = {http://meetingorganizer.copernicus.org/EGU2015/pico/17165}
}
[143] Canli, E., Thiebes, B., Höfle, B. & Glade, T. (2015): Permanent 3D Laser Scanning System for Alpine Hillslope Instabilities. In: 6th International Conference on Debris-Flow Hazards Mitigation (DFHM): Mechanics, Prediction and Assessment. Tsukuba, Japan, pp. 1-1.
BibTeX:
@inproceedings{Canli2015a,
  author = {Canli, E. and Thiebes, B. and Höfle, B. and Glade, T.},
  title = {Permanent 3D Laser Scanning System for Alpine Hillslope Instabilities},
  booktitle = {6th International Conference on Debris-Flow Hazards Mitigation (DFHM): Mechanics, Prediction and Assessment},
  year = {2015},
  pages = {1--1},
  url = {http://dfhm6.jp/poster-presentations.html}
}
[142] Gündra, H., Barron, C., Henrichs, T., Jäger, S., Höfle, B., Marx, S., Peters, R., Reimer, A. & Zipf, A. (2015): Standortkataster für Lärmschutzanlagen mit Ertragsprognose für potenzielle Photovoltaik-Anwendungen. Berichte der Bundesanstalt für Straßenwesen (BASt), Heft V 252, pp. 1-48. ISBN: 978-3-95606-150-9.
BibTeX:
@book{Guendra2015,
  author = {Gündra, H. and Barron, C. and Henrichs, T. and Jäger, S. and Höfle, B. and Marx, S. and Peters, R. and Reimer, A. and Zipf, A.},
  title = {Standortkataster für Lärmschutzanlagen mit Ertragsprognose für potenzielle Photovoltaik-Anwendungen},
  publisher = {Bundesanstalt für Straßenwesen (BASt)},
  year = {2015},
  number = {Heft V 252},
  pages = {1--48},
  url = {http://bast.opus.hbz-nrw.de/volltexte/2015/1221/}
}
[141] Hämmerle, M., Schütt, F. & Höfle, B. (2015): Terrestrial and UAS-borne Imagery for Quarry Monitoring with Low-Cost Structure from Motion. In: 35. Wissenschaftlich-Technische Jahrestagung der DGPF. Cologne, Germany, pp. 1-2.
BibTeX:
@inproceedings{Haemmerle2015,
  author = {Hämmerle, M. and Schütt, F. and Höfle, B.},
  title = {Terrestrial and UAS-borne Imagery for Quarry Monitoring with Low-Cost Structure from Motion},
  booktitle = {35. Wissenschaftlich-Technische Jahrestagung der DGPF},
  year = {2015},
  pages = {1--2},
  url = {http://www.dgpf.de/src/tagung/jt2015/proceedings/sessions.html}
}
[140] Hillen, F., Ehlers, M., Meynberg, O., Höfle, B. & Reinartz, P. (2015): Fusing Real-Time Geo-Information for a Raster-based Least Cost Navigation in an SDI. In: 9th Symposium of the International Society for Digital Earth (ISDE). Halifax, Canada, pp. 1-1.
BibTeX:
@inproceedings{Hillen2015,
  author = {Hillen, F. and Ehlers, M. and Meynberg, O. and Höfle, B. and Reinartz, P.},
  title = {Fusing Real-Time Geo-Information for a Raster-based Least Cost Navigation in an SDI},
  booktitle = {9th Symposium of the International Society for Digital Earth (ISDE)},
  year = {2015},
  pages = {1--1},
  url = {http://digitalearth2015.ca/}
}
[139] Hillen, F. & Höfle, B. (2015): Geo-reCAPTCHA: Crowdsourcing large amounts of geographic information from earth observation data. International Journal of Applied Earth Observation and Geoinformation. Vol. 40, pp. 29-38.
BibTeX:
@article{Hillen2015a,
  author = {Hillen, Florian and Höfle, Bernhard},
  title = {Geo-reCAPTCHA: Crowdsourcing large amounts of geographic information from earth observation data},
  journal = {International Journal of Applied Earth Observation and Geoinformation},
  year = {2015},
  volume = {40},
  pages = {29--38},
  url = {http://dx.doi.org/10.1016/j.jag.2015.03.012},
  doi = {http://dx.doi.org/10.1016/j.jag.2015.03.012}
}
[138] Hillen, F., Meynberg, O. & Höfle, B. (2015): Routing in Dense Human Crowds Using Smartphone Movement Data and Optical Aerial Imagery. ISPRS International Journal of Geo-Information. Vol. 4 (2), pp. 974-988.
BibTeX:
@article{Hillen2015b,
  author = {Hillen, Florian and Meynberg, Oliver and Höfle, Bernhard},
  title = {Routing in Dense Human Crowds Using Smartphone Movement Data and Optical Aerial Imagery},
  journal = {ISPRS International Journal of Geo-Information},
  year = {2015},
  volume = {4},
  number = {2},
  pages = {974--988},
  url = {http://www.mdpi.com/2220-9964/4/2/974},
  doi = {http://dx.doi.org/10.3390/ijgi4020974}
}
[137] Höfle, B., Forbriger, M., Klonner, C., Marx, S. & Usón, T. (2015): Neogeographie einer Digitalen Erde: Geo-Informatik als methodische Brücke in der interdisziplinären Naturgefahrenanalyse (NEOHAZ). In: Heidelberger Akademie der Wissenschaften: Jahrbuch 2014, pp. 259-264.
BibTeX:
@inbook{Hoefle2015,
  author = {Höfle, B. and Forbriger, M. and Klonner, C. and Marx, S. and Usón, T.},
  editor = {Heidelberger Akademie der Wissenschaften}, 
  title = {Neogeographie einer Digitalen Erde: Geo-Informatik als methodische Brücke in der interdisziplinären Naturgefahrenanalyse (NEOHAZ)},
  booktitle = {Jahrbuch 2014},
  year = {2015},
  pages = {259--264},
  url = {http://www.haw.uni-heidelberg.de/publikationen/publikation-eintrag.de.html?feld1=titel&bedi1=like&text1=Jahrbuch}
}
[136] Höfle, B., Koenig, K., Griesbaum, L., Kiefer, A., Hämmerle, M., Eitel, J. & Koma, Z. (2015): LiDAR Vegetation Investigation and Signature Analysis System (LVISA). In: Geophysical Research Abstracts. Vol. 17(EGU2015-1537-1), pp. 1-1.
BibTeX:
@inproceedings{Hoefle2015a,
  author = {Höfle, B. and Koenig, K. and Griesbaum, L. and Kiefer, A. and Hämmerle, M. and Eitel, J. and Koma, Z.},
  title = {LiDAR Vegetation Investigation and Signature Analysis System (LVISA)},
  booktitle = {Geophysical Research Abstracts},
  year = {2015},
  volume = {17},
  number = {EGU2015-1537-1},
  pages = {1--1},
  url = {http://meetingorganizer.copernicus.org/EGU2015/pico/17165}
}
[135] Klonner, C., Barron, C., Neis, P. & Höfle, B. (2015): Updating digital elevation models via change detection and fusion of human and remote sensor data in urban environments. International Journal of Digital Earth. Vol. 8 (2), pp. 153-171.
BibTeX:
@article{Klonner2015,
  author = {Klonner,Carolin and Barron,Christopher and Neis,Pascal and Höfle,Bernhard},
  title = {Updating digital elevation models via change detection and fusion of human and remote sensor data in urban environments},
  journal = {International Journal of Digital Earth},
  year = {2015},
  volume = {8},
  number = {2},
  pages = {153--171},
  url = {http://dx.doi.org/10.1080/17538947.2014.881427},
  doi = {http://dx.doi.org/10.1080/17538947.2014.881427}
}
[134] Koenig, K., Höfle, B., Hämmerle, M., Jarmer, T., Siegmann, B. & Lilienthal, H. (2015): Comparative classification analysis of post-harvest growth detection from terrestrial LiDAR point clouds in precision agriculture. ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 104 (0), pp. 112-125.
BibTeX:
@article{Koenig2015,
  author = {Kristina Koenig and Bernhard Höfle and Martin Hämmerle and Thomas Jarmer and Bastian Siegmann and Holger Lilienthal},
  title = {Comparative classification analysis of post-harvest growth detection from terrestrial LiDAR point clouds in precision agriculture},
  journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
  year = {2015},
  volume = {104},
  number = {0},
  pages = {112--125},
  url = {http://dx.doi.org/10.1016/j.isprsjprs.2015.03.003},
  doi = {http://dx.doi.org/10.1016/j.isprsjprs.2015.03.003}
}
[133] Pattee, A., Höfle, B. & Seitz, C. (2015): Integrative 3D recording methods of historic architecture Burg Hohenecken castle from southwest Germany. In: IEEE Digital Heritage 2015. Vol. 1, pp. 95-98.
BibTeX:
@inproceedings{Pattee2015,
  author = {Pattee, A. and Höfle, B. and Seitz, C.},
  title = {Integrative 3D recording methods of historic architecture Burg Hohenecken castle from southwest Germany},
  booktitle = {IEEE Digital Heritage 2015},
  year = {2015},
  volume = {1},
  pages = {95--98},
  url = {http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7413843},
  doi = {http://dx.doi.org/10.1109/DigitalHeritage.2015.7413843}
}
[132] Phalkey, R.K., Aranda-Jan, C., Marx, S., Höfle, B. & Sauerborn, R. (2015): Systematic review of current efforts to quantify the impacts of climate change on undernutrition. Proceedings of the National Academy of Sciences. Vol. 112 (33), pp. E4522-E4529.
Abstract: Malnutrition is a challenge to the health and productivity of populations and is viewed as one of the five largest adverse health impacts of climate change. Nonetheless, systematic evidence quantifying these impacts is currently limited. Our aim was to assess the scientific evidence base for the impact of climate change on childhood undernutrition (particularly stunting) in subsistence farmers in low- and middle-income countries. A systematic review was conducted to identify peer-reviewed and gray full-text documents in English with no limits for year of publication or study design. Fifteen manuscripts were reviewed. Few studies use primary data to investigate the proportion of stunting that can be attributed to climate/weather variability. Although scattered and limited, current evidence suggests a significant but variable link between weather variables, e.g., rainfall, extreme weather events (floods/droughts), seasonality, and temperature, and childhood stunting at the household level (12 of 15 studies, 80%). In addition, we note that agricultural, socioeconomic, and demographic factors at the household and individual levels also play substantial roles in mediating the nutritional impacts. Comparable interdisciplinary studies based on primary data at a household level are urgently required to guide effective adaptation, particularly for rural subsistence farmers. Systemization of data collection at the global level is indispensable and urgent. We need to assimilate data from long-term, high-quality agricultural, environmental, socioeconomic, health, and demographic surveillance systems and develop robust statistical methods to establish and validate causal links, quantify impacts, and make reliable predictions that can guide evidence-based health interventions in the future.
BibTeX:
@article{Phalkey2015,
  author = {Phalkey, Revati K. and Aranda-Jan, Clara and Marx, Sabrina and Höfle, Bernhard and Sauerborn, Rainer},
  title = {Systematic review of current efforts to quantify the impacts of climate change on undernutrition},
  journal = {Proceedings of the National Academy of Sciences},
  year = {2015},
  volume = {112},
  number = {33},
  pages = {E4522--E4529},
  url = {http://dx.doi.org/10.1073/pnas.1409769112},
  doi = {http://dx.doi.org/10.1073/pnas.1409769112}
}
[131] Tomljenovic, I., Höfle, B., Tiede, D. & Blaschke, T. (2015): Building Extraction from Airborne Laser Scanning Data: An Analysis of the State of the Art. Remote Sensing. Vol. 7 (4), pp. 3826-3862.
BibTeX:
@article{Tomljenovic2015,
  author = {Tomljenovic, Ivan and Höfle, Bernhard and Tiede, Dirk and Blaschke, Thomas},
  title = {Building Extraction from Airborne Laser Scanning Data: An Analysis of the State of the Art},
  journal = {Remote Sensing},
  year = {2015},
  volume = {7},
  number = {4},
  pages = {3826--3862},
  url = {http://dx.doi.org/10.3390/rs70403826},
  doi = {http://dx.doi.org/10.3390/rs70403826}
}


2014

top
[130] Belgiu, M., Tomljenovic, I., Lampoltshammer, T.J., Blaschke, T. & Höfle, B. (2014): Ontology-Based Classification of Building Types Detected from Airborne Laser Scanning Data. Remote Sensing. Vol. 6 (2), pp. 1347-1366.
BibTeX:
@article{Belgiu2014,
  author = {Belgiu, Mariana and Tomljenovic, Ivan and Lampoltshammer, Thomas J. and Blaschke, Thomas and Höfle, Bernhard},
  title = {Ontology-Based Classification of Building Types Detected from Airborne Laser Scanning Data},
  journal = {Remote Sensing},
  year = {2014},
  volume = {6},
  number = {2},
  pages = {1347--1366},
  url = {http://www.mdpi.com/2072-4292/6/2/1347},
  doi = {http://dx.doi.org/10.3390/rs6021347}
}
[129] Dorn, H., Vetter, M. & Höfle, B. (2014): GIS-Based Roughness Derivation for Flood Simulations: A Comparison of Orthophotos, LiDAR and Crowdsourced Geodata. Remote Sensing. Vol. 6 (2), pp. 1739-1759.
BibTeX:
@article{Dorn2014,
  author = {Dorn, Helen and Vetter, M. and Höfle, B.},
  title = {GIS-Based Roughness Derivation for Flood Simulations: A Comparison of Orthophotos, LiDAR and Crowdsourced Geodata},
  journal = {Remote Sensing},
  year = {2014},
  volume = {6},
  number = {2},
  pages = {1739--1759},
  url = {http://dx.doi.org/10.3390/rs6021739},
  doi = {http://dx.doi.org/10.3390/rs6021739}
}
[128] Hämmerle, M. & Höfle, B. (2014): Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture. Sensors. Vol. 14 (12), pp. 24212-24230.
BibTeX:
@article{Haemmerle2014,
  author = {Hämmerle, M. and Höfle, B.},
  title = {Effects of Reduced Terrestrial LiDAR Point Density on High-Resolution Grain Crop Surface Models in Precision Agriculture},
  journal = {Sensors},
  year = {2014},
  volume = {14},
  number = {12},
  pages = {24212--24230},
  url = {http://www.mdpi.com/1424-8220/14/12/24212},
  doi = {http://dx.doi.org/10.3390/s141224212}
}
[127] Hämmerle, M., Höfle, B., Fuchs, J., Schröder-Ritzrau, A., Vollweiler, N. & Frank, N. (2014): Comparison of Kinect and Terrestrial LiDAR Capturing Natural Karst Cave 3D Objects. IEEE Geoscience and Remote Sensing Letters. Vol. 11 (11), pp. 1896-1900.
BibTeX:
@article{Haemmerle2014a,
  author = {Hämmerle, M. and Höfle, B. and Fuchs, J. and Schröder-Ritzrau, A. and Vollweiler, N. and Frank, N.},
  title = {Comparison of Kinect and Terrestrial LiDAR Capturing Natural Karst Cave 3D Objects},
  journal = {IEEE Geoscience and Remote Sensing Letters},
  year = {2014},
  volume = {11},
  number = {11},
  pages = {1896--1900},
  url = {http://dx.doi.org/10.1594/PANGAEA.830567},
  doi = {http://dx.doi.org/10.1109/LGRS.2014.2313599}
}
[126] Hillen, F., Ehlers, M., Höfle, B. & Reinartz, P. (2014): Real-time Geo-Information Fusion as one key aspect of Digital Earth. In: Proceedings of 34th EARSeL Symposium. Warsaw, Poland, pp. 127-127.
Abstract: The Digital Earth vision by Al Gore recently has evolved to a powerful real-time toolbox for various use cases. Nowadays, almost every geo-sensor data can easily be integrated in a Digital Earth application in real-time and near real-time. This can be in-situ sensor data, smartphone sensor data or also high-resolution remote sensing imagery. However, the benefit of combining multiple data sources is only rarely exploited. Remote sensing data, for example, generally cover large areas but do not deliver information for hidden areas (e.g. under bridges, in house) or under cloud cover. In contrast to that, in-situ sensors deliver punctual information only but may provide information for areas that are invisible to remote sensors. Thus, the first idea that comes to mind is to use the advantages of the respective sensor types to eliminate the disadvantages of the other. The real-time aspect is a crucial point in this process, especially for time-critical applications like early warning systems, decision support systems for security issues or precision fertilisation for agricultural areas. To date, there is a lack of usage regarding real-time integration of fused geo-information even though the benefit is obvious. This work will present the information fusion service (IFS) as a standardised way to fuse and integrate real-time geo-sensor data in Digital Earth applications. An example is presented that utilises the concept of the IFS for a recording campaign combining remote sensing and smartphone in-situ data during a football game. In doing so, the benefit of real-time data integration as well as geo-information fusion in general is emphasised.
BibTeX:
@inproceedings{Hillen2014,
  author = {Hillen, F. and Ehlers, M. and Höfle, B. and Reinartz, P.},
  title = {Real-time Geo-Information Fusion as one key aspect of Digital Earth},
  booktitle = {Proceedings of 34th EARSeL Symposium},
  year = {2014},
  pages = {127--127}
}
[125] Hillen, F. & Höfle, B. (2014): Fast-Echtzeit vs. Echtzeit - die Auswirkungen von Echtzeit-Datenintegration am Beispiel einer agentenbasierten Modellierung im GIS. In: Strobl, J., Blaschke, T., Griesebner, G. & Zagel, B.: Angewandte Geoinformatik 2014, pp. 658-663. Wichmann.
BibTeX:
@inbook{Hillen2014a,
  author = {Hillen, F. and Höfle, B.},
  editor = {Strobl, J., and Blaschke, T., and Griesebner, G., and Zagel, B.}, 
  title = {Fast-Echtzeit vs. Echtzeit - die Auswirkungen von Echtzeit-Datenintegration am Beispiel einer agentenbasierten Modellierung im GIS},
  booktitle = {Angewandte Geoinformatik 2014},
  publisher = {Wichmann},
  year = {2014},
  pages = {658--663},
  url = {http://wl27www658.webland.ch/bh/docs/papers/2014/Hillen_Hoefle_2014_AGIT.pdf}
}
[124] Hillen, F., Höfle, B., Ehlers, M. & Reinartz, P. (2014): Information Fusion Infrastructure for Remote Sensing and In-Situ Sensor Data to Model People Dynamics. International Journal of Image and Data Fusion. Vol. 5 (1), pp. 54-69.
BibTeX:
@article{Hillen2014b,
  author = {Hillen, F. and Höfle, B. and Ehlers, M. and Reinartz, P.},
  title = {Information Fusion Infrastructure for Remote Sensing and In-Situ Sensor Data to Model People Dynamics},
  journal = {International Journal of Image and Data Fusion},
  year = {2014},
  volume = {5},
  number = {1},
  pages = {54--69},
  url = {http://dx.doi.org/10.1080/19479832.2013.870934},
  doi = {http://dx.doi.org/10.1080/19479832.2013.870934}
}
[123] Hillen, F., Höfle, B., Ehlers, M. & Reinartz, P. (2014): The Potential of Agent-Based Modelling for Verification of People Trajectories Based on Smartphone Sensor Data. In: IOP Conference Series: Earth and Environmental Science. Vol. 18(1), pp. 1-6.
Abstract: In this paper the potential of smartphone sensor data for verification of people trajectories derived from airborne remote sensing data are investigated and discussed based on simulated test recordings in the city of Osnabrueck, Germany. For this purpose, the airborne imagery is simulated by images taken from a high building with a typical single lens reflex camera. The smartphone data required for the analysis of the potential is simultaneously recorded by test persons on the ground. In a second step, the quality of the smartphone sensor data is evaluated regarding the integration into simulation and modelling approaches. In this context we studied the potential of the agent-based modelling technique concerning the verification of people trajectories.
BibTeX:
@inproceedings{Hillen2014c,
  author = {Hillen, F. and Höfle, B. and Ehlers, M. and Reinartz, P.},
  title = {The Potential of Agent-Based Modelling for Verification of People Trajectories Based on Smartphone Sensor Data},
  booktitle = {IOP Conference Series: Earth and Environmental Science},
  year = {2014},
  volume = {18},
  number = {1},
  pages = {1--6},
  url = {http://dx.doi.org/10.1088/1755-1315/18/1/012052},
  doi = {http://dx.doi.org/10.1088/1755-1315/18/1/012052}
}
[122] Hillen, F., Höfle, B. & de Lange, N. (2014): Real-time geodata integration using the example of agent-based modelling. In: Proceedings of the GEO Business 2014. London, UK, pp. 1-1.
BibTeX:
@inproceedings{Hillen2014d,
  author = {Hillen, F. and Höfle, B. and de Lange, N.},
  title = {Real-time geodata integration using the example of agent-based modelling},
  booktitle = {Proceedings of the GEO Business 2014},
  year = {2014},
  pages = {1--1},
  url = {http://geobusinessshow.com/}
}
[121] Höfle, B. (2014): Radiometric Correction of Terrestrial LiDAR Point Cloud Data for Individual Maize Plant Detection. IEEE Geoscience and Remote Sensing Letters. Vol. 11 (1), pp. 94-98.
BibTeX:
@article{Hoefle2014,
  author = {Höfle, B.},
  title = {Radiometric Correction of Terrestrial LiDAR Point Cloud Data for Individual Maize Plant Detection},
  journal = {IEEE Geoscience and Remote Sensing Letters},
  year = {2014},
  volume = {11},
  number = {1},
  pages = {94--98},
  url = {http://dx.doi.org/10.1109/LGRS.2013.2247022},
  doi = {http://dx.doi.org/10.1109/LGRS.2013.2247022}
}
[120] Klonner, C. & Höfle, B. (2014): Fusion von 3D-Fernerkundungsdaten und nutzergenerierter Geoinformation aus dem Web für die Aktualisierung von 3D-Höhenmodellen in Stadtgebieten. In: Gerhard, U., Meier, G., Nüsser, M. & Schmidt, S.: Heidelberger Geographische Gesellschaft (HGG) Journal, Vol. 28, pp. 45-48.
BibTeX:
@inbook{Klonner2014,
  author = {Klonner, C.. and Höfle, B.},
  editor = {Gerhard, U., and Meier, G., and Nüsser, M, and Schmidt, S.}, 
  title = {Fusion von 3D-Fernerkundungsdaten und nutzergenerierter Geoinformation aus dem Web für die Aktualisierung von 3D-Höhenmodellen in Stadtgebieten},
  booktitle = {Heidelberger Geographische Gesellschaft (HGG) Journal},
  year = {2014},
  volume = {28},
  pages = {45--48}
}
[119] Malinowski, R., Höfle, B., Koenig, K., Groom, G. & Schwanghart, W. (2014): Mapping of local-scale flooding on vegetated floodplains from radiometrically calibrated airborne laser scanning data. In: Geophysical Research Abstracts. Vol. 16(EGU2014-11204), pp. 1-1.
BibTeX:
@inproceedings{Malinowski2014,
  author = {Malinowski, R. and Höfle, B. and Koenig, K. and Groom, G. and Schwanghart, W.},
  title = {Mapping of local-scale flooding on vegetated floodplains from radiometrically calibrated airborne laser scanning data},
  booktitle = {Geophysical Research Abstracts},
  year = {2014},
  volume = {16},
  number = {EGU2014-11204},
  pages = {1--1}
}
[118] Marx, S., Phalkey, R., Aranda, C., Profe, J., Sauerborn, R. & Höfle, B. (2014): Geographic information analysis and web-based geoportals to explore malnutrition in Sub-Saharan Africa: a systematic review of approaches. BMC Public Health. Vol. 14 (1), pp. 1189.
Abstract: BACKGROUND:Childhood malnutrition is a serious challenge in Sub-Saharan Africa (SSA) and a major underlying cause of death. It is the result of a dynamic and complex interaction between political, social, economic, environmental and other factors. As spatially oriented research has been established in health sciences in recent years, developments in Geographic Information Science (GIScience) provide beneficial tools to get an improved understanding of malnutrition.METHODS:In order to assess the current state of knowledge regarding the use of geoinformation analyses for exploring malnutrition in SSA, a systematic literature review of peer-reviewed literature is conducted using Scopus, ISI Web of Science and PubMed. As a supplement to the review, we carry on to investigate the establishment of web-based geoportals for providing freely accessible malnutrition geodata to a broad community. Based on these findings, we identify current limitations and discuss how new developments in GIScience might help to overcome impending barriers.RESULTS:563 articles are identified from the searches, from which a total of nine articles and eight geoportals meet inclusion criteria. The review suggests that the spatial dimension of malnutrition is analyzed most often at the regional and national level using geostatistical analysis methods. Therefore, heterogeneous geographic information at different spatial scales and from multiple sources is combined by applying geoinformation analysis methods such as spatial interpolation, aggregation and downscaling techniques. Geocoded malnutrition data from the Demographic and Health Survey Program are the most common information source to quantify the prevalence of malnutrition on a local scale and are frequently combined with regional data on climate, population, agriculture and/or infrastructure. Only aggregated geoinformation about malnutrition prevalence is freely accessible, mostly displayed via web map visualizations or downloadable map images. The lack of detailed geographic data at household and local level is a major limitation for an in-depth assessment of malnutrition and links to potential impact factors.CONCLUSIONS:We propose that the combination of malnutrition-related studies with most recent GIScience developments such as crowd-sourced geodata collection, (web-based) interoperable spatial health data infrastructures as well as (dynamic) information fusion approaches are beneficial to deepen the understanding of this complex phenomenon.
BibTeX:
@article{Marx2014,
  author = {Marx, S. and Phalkey, R. and Aranda, C. and Profe, J. and Sauerborn, R. and Höfle, B.},
  title = {Geographic information analysis and web-based geoportals to explore malnutrition in Sub-Saharan Africa: a systematic review of approaches},
  journal = {BMC Public Health},
  year = {2014},
  volume = {14},
  number = {1},
  pages = {1189},
  url = {http://dx.doi.org/10.1186/1471-2458-14-1189},
  doi = {http://dx.doi.org/10.1186/1471-2458-14-1189}
}
[117] Nesbitt, R., Gabrysch, S., Laub, A., Soremekun, S., Manu, A., Kirkwood, B., Amenga-Etego, S., Wiru, K., Höfle, B. & Grundy, C. (2014): Methods to measure potential spatial access to delivery care in low- and middle-income countries: a case study in rural Ghana. International Journal of Health Geographics. Vol. 13 (1), pp. 1-13.
Abstract: BACKGROUND:Access to skilled attendance at childbirth is crucial to reduce maternal and newborn mortality. Several different measures of geographic access are used concurrently in public health research, with the assumption that sophisticated methods are generally better. Most of the evidence for this assumption comes from methodological comparisons in high-income countries. We compare different measures of travel impedance in a case study in Ghana's Brong Ahafo region to determine if straight-line distance can be an adequate proxy for access to delivery care in certain low- and middle-income country (LMIC) settings.METHODS:We created a geospatial database, mapping population location in both compounds and village centroids, service locations for all health facilities offering delivery care, land-cover and a detailed road network. Six different measures were used to calculate travel impedance to health facilities (straight-line distance, network distance, network travel time and raster travel time, the latter two both mechanized and non-mechanized). The measures were compared using Spearman rank correlation coefficients, absolute differences, and the percentage of the same facilities identified as closest. We used logistic regression with robust standard errors to model the association of the different measures with health facility use for delivery in 9,306 births.RESULTS:Non-mechanized measures were highly correlated with each other, and identified the same facilities as closest for approximately 80% of villages. Measures calculated from compounds identified the same closest facility as measures from village centroids for over 85% of births. For 90% of births, the aggregation error from using village centroids instead of compound locations was less than 35minutes and less than 1.12km. All non-mechanized measures showed an inverse association with facility use of similar magnitude, an approximately 67% reduction in odds of facility delivery per standard deviation increase in each measure (OR=0.33).CONCLUSION:Different data models and population locations produced comparable results in our case study, thus demonstrating that straight-line distance can be reasonably used as a proxy for potential spatial access in certain LMIC settings. The cost of obtaining individually geocoded population location and sophisticated measures of travel impedance should be weighed against the gain in accuracy.
BibTeX:
@article{Nesbitt2014,
  author = {Nesbitt, Robin and Gabrysch, Sabine and Laub, Alexandra and Soremekun, Seyi and Manu, Alexander and Kirkwood, Betty and Amenga-Etego, Seeba and Wiru, Kenneth and Höfle, Bernhard and Grundy, Chris},
  title = {Methods to measure potential spatial access to delivery care in low- and middle-income countries: a case study in rural Ghana},
  journal = {International Journal of Health Geographics},
  year = {2014},
  volume = {13},
  number = {1},
  pages = {1--13},
  url = {http://www.ij-healthgeographics.com/content/13/1/25},
  doi = {http://dx.doi.org/10.1186/1476-072X-13-25}
}
[116] Regvat, R., Hämmerle, M., Marx, S., Koenig, K. & Höfle, B. (2014): 3D-punktbasierte Solarpotenzialanalyse für Gebäudefassaden mit freien Geodaten. In: Strobl, J., Blaschke, T., Griesebner, G. & Zagel, B.: Angewandte Geoinformatik 2014, pp. 196-204. Wichmann.
BibTeX:
@inbook{Regvat2014,
  author = {Regvat, R. and Hämmerle, M. and Marx, S. and Koenig, K. and Höfle, B.},
  editor = {Strobl, J., and Blaschke, T., and Griesebner, G., and Zagel, B.}, 
  title = {3D-punktbasierte Solarpotenzialanalyse für Gebäudefassaden mit freien Geodaten},
  booktitle = {Angewandte Geoinformatik 2014},
  publisher = {Wichmann},
  year = {2014},
  pages = {196--204},
  url = {http://wl27www658.webland.ch/bh/docs/papers/2014/Regvat_et_al_2014_AGIT.pdf}
}
[115] Tomljenovic, I., Blaschke, T., Höfle, B. & Tiede, D. (2014): Potential and Idiosyncrasy of Object-Based Image Analysis for Airborne LiDAR-Based Building Detection. South-Eastern European Journal of Earth Observation and Geomatics. Vol. 3 (2S), pp. 517-520.
BibTeX:
@article{Tomljenovic2014,
  author = {Tomljenovic, I. and Blaschke, T. and Höfle, B. and Tiede, D.},
  title = {Potential and Idiosyncrasy of Object-Based Image Analysis for Airborne LiDAR-Based Building Detection},
  journal = {South-Eastern European Journal of Earth Observation and Geomatics},
  year = {2014},
  volume = {3},
  number = {2S},
  pages = {517--520},
  url = {http://wl27www658.webland.ch/bh/docs/papers/2014/Tomljenovic_et_al_2014_GEOBIA.pdf}
}


2013

top
[114] Bergmann, M. & Höfle, B. (2013): GIS-gestützte Standortplanung von Windenergieanlagen mit freien und amtlichen Geodaten. In: Strobl, J., Blaschke, T., Griesebner, G. & Zagel, B.: Angewandte Geoinformatik 2013, pp. 480-489. Wichmann.
BibTeX:
@inbook{Bergmann2013,
  author = {Bergmann, M. and Höfle, B.},
  editor = {Strobl, J., and Blaschke, T., and Griesebner, G., and Zagel, B.}, 
  title = {GIS-gestützte Standortplanung von Windenergieanlagen mit freien und amtlichen Geodaten},
  booktitle = {Angewandte Geoinformatik 2013},
  publisher = {Wichmann},
  year = {2013},
  pages = {480--489}
}
[113] Dorn, H., Vetter, M. & Höfle, B. (2013): GIS-basierte Rauigkeitsableitung für Hochwassersimulationen: Eine Sensitivitätsanalyse mit Orthophotos, Laserscanning und freien Geodaten. In: Arbeitskreis-Treffen des AK Fernerkundung der Deutschen Gesellschaft für Geographie (DGfG). Tübingen, Germany, pp. 1-2.
BibTeX:
@inproceedings{Dorn2013,
  author = {Dorn, H., and Vetter, M., and Höfle, B.},
  title = {GIS-basierte Rauigkeitsableitung für Hochwassersimulationen: Eine Sensitivitätsanalyse mit Orthophotos, Laserscanning und freien Geodaten},
  booktitle = {Arbeitskreis-Treffen des AK Fernerkundung der Deutschen Gesellschaft für Geographie (DGfG)},
  year = {2013},
  pages = {1--2},
  url = {http://www.geo.uni-tuebingen.de/akfe2013}
}
[112] Hämmerle, M., Forbriger, M. & Höfle, B. (2013): Multitemporal 3D data capturing and GIS analysis of fluvial processes and geomorphological changes with terrestrial laser scanning. In: Geophysical Research Abstracts. Vol. 15(EGU2013-1748), pp. 1-1.
BibTeX:
@inproceedings{Haemmerle2013,
  author = {Hämmerle, M. and Forbriger, M. and Höfle, B.},
  title = {Multitemporal 3D data capturing and GIS analysis of fluvial processes and geomorphological changes with terrestrial laser scanning},
  booktitle = {Geophysical Research Abstracts},
  year = {2013},
  volume = {15},
  number = {EGU2013-1748},
  pages = {1--1},
  url = {http://meetingorganizer.copernicus.org/EGU2013/EGU2013-1748.pdf}
}
[111] Hämmerle, M., Forbriger, M. & Höfle, B. (2013): Multitemporale 3D-Erfassung und GIS-Analyse fluvial-geomorphologischer Prozesse mit terrestrischem Laserscanning. In: Proceedings of the Geoinformatik 2013. Heidelberg, Germany, pp. 1-8.
BibTeX:
@inproceedings{Haemmerle2013a,
  author = {Hämmerle, M. and Forbriger, M. and Höfle, Bernhard},
  title = {Multitemporale 3D-Erfassung und GIS-Analyse fluvial-geomorphologischer Prozesse mit terrestrischem Laserscanning},
  booktitle = {Proceedings of the Geoinformatik 2013},
  year = {2013},
  pages = {1--8}
}
[110] Helbich, M. & Höfle, B. (2013): Verbesserung der Vorhersagegenauigkeit von urbanen hedonischen Immobilienpreismodellen durch Laserscanning. In: Gerhard, U., Meier, G., Nüsser, M. & Schmidt, S.: Heidelberger Geographische Gesellschaft (HGG) Journal, Vol. 27, pp. 17-19.
BibTeX:
@inbook{Helbich2013,
  author = {Helbich, M. and Höfle, B.},
  editor = {Gerhard, U., and Meier, G., and Nüsser, M, and Schmidt, S.}, 
  title = {Verbesserung der Vorhersagegenauigkeit von urbanen hedonischen Immobilienpreismodellen durch Laserscanning},
  booktitle = {Heidelberger Geographische Gesellschaft (HGG) Journal},
  year = {2013},
  volume = {27},
  pages = {17--19}
}
[109] Helbich, M., Jochem, A., Mücke, W. & Höfle, B. (2013): Boosting the Predictive Accuracy of Urban Hedonic House Price Models Through Airborne Laser Scanning. Computers, Environment and Urban Systems. Vol. 39 (0), pp. 81-92.
BibTeX:
@article{Helbich2013a,
  author = {Helbich, M., and Jochem, A., and Mücke, W., and Höfle, B.},
  title = {Boosting the Predictive Accuracy of Urban Hedonic House Price Models Through Airborne Laser Scanning},
  journal = {Computers, Environment and Urban Systems},
  year = {2013},
  volume = {39},
  number = {0},
  pages = {81--92},
  url = {http://dx.doi.org/10.1016/j.compenvurbsys.2013.01.001},
  doi = {http://dx.doi.org/10.1016/j.compenvurbsys.2013.01.001}
}
[108] Hillen, F., Ehlers, M., Reinartz, P. & Höfle, B. (2013): Fusion of Real-Time Remote Sensing Data and In-Situ Sensor Data to Increase Situational Awareness in Digital Earth Applications. In: Proceedings of 35th International Symposium on Remote Sensing of Environment (ISRSE). Beijing, China, pp. 1-6.
BibTeX:
@inproceedings{Hillen2013,
  author = {Hillen, F. and Ehlers, M. and Reinartz, P. and Höfle, B.},
  title = {Fusion of Real-Time Remote Sensing Data and In-Situ Sensor Data to Increase Situational Awareness in Digital Earth Applications},
  booktitle = {Proceedings of 35th International Symposium on Remote Sensing of Environment (ISRSE)},
  year = {2013},
  pages = {1--6},
  url = {http://www.isrse35.org/}
}
[107] Hillen, F. & Höfle, B. (2013): Web-based visibility analysis with LiDAR data. gis.SCIENCE. Vol. 26 (1), pp. 1-7.
BibTeX:
@article{Hillen2013a,
  author = {Hillen, F., and Höfle, B.},
  title = {Web-based visibility analysis with LiDAR data},
  journal = {gis.SCIENCE},
  year = {2013},
  volume = {26},
  number = {1},
  pages = {1--7},
  url = {http://www.wichmann-verlag.de/gis-fachzeitschriften/gis-familie.html}
}
[106] Höfle, B. (2013): Geoinformation extraction from 3D pointclouds – current status and future perspective. In: Proceedings of Digital Geoarchaeology 2013. Heidelberg, Germany, pp. 11-11.
BibTeX:
@inproceedings{Hoefle2013,
  author = {Höfle, B.},
  title = {Geoinformation extraction from 3D pointclouds – current status and future perspective},
  booktitle = {Proceedings of Digital Geoarchaeology 2013},
  year = {2013},
  pages = {11--11},
  url = {https://digitalgeoarchaeology.wordpress.com/}
}
[105] Höfle, B., Griesbaum, L. & Forbriger, M. (2013): GIS-Based Detection of Gullies in Terrestrial LiDAR Data of the Cerro Llamoca Peatland (Peru). Remote Sensing. Vol. 11 (5), pp. 5851-5870.
BibTeX:
@article{Hoefle2013a,
  author = {Höfle, B., and Griesbaum, L., and Forbriger, M.},
  title = {GIS-Based Detection of Gullies in Terrestrial LiDAR Data of the Cerro Llamoca Peatland (Peru)},
  journal = {Remote Sensing},
  year = {2013},
  volume = {11},
  number = {5},
  pages = {5851--5870},
  url = {http://dx.doi.org/10.3390/rs5115851},
  doi = {http://dx.doi.org/10.3390/rs5115851}
}
[104] Jarmer, T., Siegmann, B., Lilienthal, H., Höfle, B., Selige, T. & Richter, N. (2013): LAI assessing of wheat stands from AISA-DUAL imagery. In: Proceedings of the EARSeL 8th SIG-Imaging Spectroscopy Workshop. Nantes, France, pp. 1-5.
BibTeX:
@inproceedings{Jarmer2013,
  author = {Jarmer, T. and Siegmann, B. and Lilienthal, H. and Höfle, B. and Selige, T. and Richter, N.},
  title = {LAI assessing of wheat stands from AISA-DUAL imagery},
  booktitle = {Proceedings of the EARSeL 8th SIG-Imaging Spectroscopy Workshop},
  year = {2013},
  pages = {1--5}
}
[103] Koenig, K., Höfle, B., Müller, L., Hämmerle, M., Jarmer, T., Siegmann, B. & Lilienthal, H. (2013): Mapping Density of Harvest Residues from Terrestrial Laser Scanning and RGB Imagery. In: ISPRS Workshop on UAV-based Remote Sensing Methods for Monitoring Vegetation. Cologne, Germany, pp. 1-1.
BibTeX:
@inproceedings{Koenig2013,
  author = {Koenig, K. and Höfle, B. and Müller, L. and Hämmerle, M. and Jarmer, T. and Siegmann, B. and Lilienthal, H.},
  title = {Mapping Density of Harvest Residues from Terrestrial Laser Scanning and RGB Imagery},
  booktitle = {ISPRS Workshop on UAV-based Remote Sensing Methods for Monitoring Vegetation},
  year = {2013},
  pages = {1--1}
}
[102] Koenig, K., Höfle, B., Müller, L., Hämmerle, M., Jarmer, T., Siegmann, B. & Lilienthal, H. (2013): Radiometric correction of terrestrial LiDAR data for mapping of harvest residues density. In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. II(5/W2), pp. 133-138.
BibTeX:
@inproceedings{Koenig2013a,
  author = {Koenig, K., and Höfle, B. and Müller, L. and Hämmerle, M. and Jarmer, T. and Siegmann, B. and Lilienthal, H.},
  title = {Radiometric correction of terrestrial LiDAR data for mapping of harvest residues density},
  booktitle = {ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2013},
  volume = {II},
  number = {5/W2},
  pages = {133--138},
  url = {http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-5-W2/133/2013/isprsannals-II-5-W2-133-2013.pdf}
}
[101] Koenig, K., Kiefer, A. & Höfle, B. (2013): Web-based visualization and object-based analysis of 3D geoinformation from laser scanning point clouds. gis.SCIENCE. Vol. 26 (2), pp. 70-76.
BibTeX:
@article{Koenig2013b,
  author = {Koenig, K. and Kiefer, A. and Höfle, B.},
  title = {Web-based visualization and object-based analysis of 3D geoinformation from laser scanning point clouds},
  journal = {gis.SCIENCE},
  year = {2013},
  volume = {26},
  number = {2},
  pages = {70--76},
  url = {http://www.wichmann-verlag.de/gis-fachzeitschriften/artikelarchiv/2013/gis-science-ausgabe-02-2013/webbasierte-visualisierung-und-objektbasierte-analyse-von-3d-geoinformation-aus-laserpunktwolken.html}
}
[100] Koenig, K., Kiefer, A. & Höfle, B. (2013): Laser Scanning for 3D Vegetation Characterization: Web-based Infrastructure for Exploration and Analysis of Vegetation Signatures. In: ISPRS Workshop on UAV-based Remote Sensing Methods for Monitoring Vegetation. Cologne, Germany, pp. 1-1.
BibTeX:
@inproceedings{Koenig2013c,
  author = {Koenig, K. and Kiefer, A. and Höfle, B.},
  title = {Laser Scanning for 3D Vegetation Characterization: Web-based Infrastructure for Exploration and Analysis of Vegetation Signatures},
  booktitle = {ISPRS Workshop on UAV-based Remote Sensing Methods for Monitoring Vegetation},
  year = {2013},
  pages = {1--1}
}
[99] Miernik, G., Kissner, T., Profe, J., Höfle, B., Bechstädt, T. & Zühlke, R. (2013): LiDAR-basierte Aufschlussanalogmodellierung und Datenextraktion für Reservoirmodelle. In: Proceedings of DGMK/ÖGEW-Frühjahrstagung - Fachbereich Aufsuchung und Gewinnung. Celle, Germany, pp. 1-6.
BibTeX:
@inproceedings{Miernik2013,
  author = {Miernik, G. and Kissner, T. and Profe, J. and Höfle, B. and Bechstädt, T. and Zühlke, R.},
  title = {LiDAR-basierte Aufschlussanalogmodellierung und Datenextraktion für Reservoirmodelle},
  booktitle = {Proceedings of DGMK/ÖGEW-Frühjahrstagung - Fachbereich Aufsuchung und Gewinnung},
  year = {2013},
  pages = {1--6},
  url = {http://www.dgmk.de/upstream/Abstracts_Celle13/abstracts_celle13.htm}
}
[98] Miernik, G., Profe, J., Höfle, B., Kissner, T., Emmerich, A., Bechstädt, T. & Zühlke, R. (2013): Modelling fractured reservoirs from LiDAR derived digital outcrop models (DOMs). In: Proceedings of the 30th IAS Meeting of Sedimentology. Manchester, UK, pp. 1-2.
BibTeX:
@inproceedings{Miernik2013a,
  author = {Miernik, G. and Profe, J. and Höfle, B. and Kissner, T. and Emmerich, A. and Bechstädt, T. and Zühlke, R.},
  title = {Modelling fractured reservoirs from LiDAR derived digital outcrop models (DOMs)},
  booktitle = {Proceedings of the 30th IAS Meeting of Sedimentology},
  year = {2013},
  pages = {1--2},
  url = {http://www.sedimentologists.org/meetings/ims-scientific-programme}
}
[97] Peters, R. & Höfle, B. (2013): Solarpotenzialanalyse an vertikalen Strukturen mit ArcGIS und GRASS GIS am Beispiel von Lärmschutzwänden. In: Proceedings of the Geoinformatik 2013. Heidelberg, Germany, pp. 1-3.
BibTeX:
@inproceedings{Peters2013,
  author = {Peters, Robin and Höfle, Bernhard},
  title = {Solarpotenzialanalyse an vertikalen Strukturen mit ArcGIS und GRASS GIS am Beispiel von Lärmschutzwänden},
  booktitle = {Proceedings of the Geoinformatik 2013},
  year = {2013},
  pages = {1--3}
}
[96] Profe, J., Forbriger, M. & Höfle, B. (2013): Terrestrisches Laserscanning für geoarchäologische Fragestellungen in Koumasa/Kreta. Report No. 022013, Institute of Geography, University of Heidelberg, pp. 1-18.
BibTeX:
@techreport{Profe2013,
  author = {Profe, J., and Forbriger, M.., and Höfle, B.},
  title = {Terrestrisches Laserscanning für geoarchäologische Fragestellungen in Koumasa/Kreta},
  year = {2013},
  number = {No. 022013},
  pages = {1--18}
}
[95] Siart, C., Forbriger, M., Nowaczinski, E., Hecht, S. & Höfle, B. (2013): Fusion of multi-resolution surface (terrestrial laser scanning) and subsurface geodata (ERT, SRT) for karst landform investigation and geomorphometric quantification. Earth Surface Processes and Landforms. Vol. 38 (10), pp. 1135-1147.
BibTeX:
@article{Siart2013,
  author = {Siart, C. and Forbriger, M. and Nowaczinski, E. and Hecht, S. and Höfle, B.},
  title = {Fusion of multi-resolution surface (terrestrial laser scanning) and subsurface geodata (ERT, SRT) for karst landform investigation and geomorphometric quantification},
  journal = {Earth Surface Processes and Landforms},
  year = {2013},
  volume = {38},
  number = {10},
  pages = {1135--1147},
  url = {http://dx.doi.org/10.1002/esp.3394},
  doi = {http://dx.doi.org/10.1002/esp.3394}
}
[94] Siegmann, B., Jarmer, T., Lilienthal, H., Richter, N., Selige, T. & Höfle, B. (2013): Comparison of narrow band vegetation indices and empirical models from hyperspectral remote sensing data for the assessment of wheat nitrogen concentration. In: Proceedings of the EARSeL 8th SIG-Imaging Spectroscopy Workshop. Nantes, France, pp. 1-6.
BibTeX:
@inproceedings{Siegmann2013,
  author = {Siegmann, B., and Jarmer, T., and Lilienthal, H., and Richter, N., and Selige, T., and Höfle, B.},
  title = {Comparison of narrow band vegetation indices and empirical models from hyperspectral remote sensing data for the assessment of wheat nitrogen concentration},
  booktitle = {Proceedings of the EARSeL 8th SIG-Imaging Spectroscopy Workshop},
  year = {2013},
  pages = {1--6}
}
[93] Siegmann, B., Jarmer, T., Lilienthal, H., Richter, N., Selige, T. & Höfle, B. (2013): Comparison of narrow band vegetation indices and empirical models from hyperspectral remote sensing data for the assessment of wheat nitrogen concentration. In: ISPRS Workshop on UAV-based Remote Sensing Methods for Monitoring Vegetation. Cologne, Germany, pp. 1-1.
BibTeX:
@inproceedings{Siegmann2013a,
  author = {Siegmann, B. and Jarmer, T. and Lilienthal, H. and Richter, N. and Selige, T. and Höfle, B.},
  title = {Comparison of narrow band vegetation indices and empirical models from hyperspectral remote sensing data for the assessment of wheat nitrogen concentration},
  booktitle = {ISPRS Workshop on UAV-based Remote Sensing Methods for Monitoring Vegetation},
  year = {2013},
  pages = {1--1}
}


2012

top
[92] Forbriger, M., Höfle, B., Siart, C., Schittek, K. & Bubenzer, O. (2012): High-resolution Terrestrial Laser Scanning (TLS) on cushion peatlands - a case study from the Peruvian Andes. In: Geophysical Research Abstracts. Vol. 14(EGU2012-11485), pp. 1-1.
BibTeX:
@inproceedings{Forbriger2012,
  author = {Forbriger, M. and Höfle, B. and Siart, C. and Schittek, K.. and Bubenzer, O.},
  title = {High-resolution Terrestrial Laser Scanning (TLS) on cushion peatlands - a case study from the Peruvian Andes},
  booktitle = {Geophysical Research Abstracts},
  year = {2012},
  volume = {14},
  number = {EGU2012-11485},
  pages = {1--1}
}
[91] Forbriger, M., Schittek, K., Höfle, B., Siart, C. & Eitel, B. (2012): Multi-method investigation of cushion peatlands (bofedales) on the Peruvian Altiplano - high-resolution terrestrial archives for palaeoenvironmental reconstructions. In: Geophysical Research Abstracts. Vol. 14(EGU2012-11383), pp. 1-1.
BibTeX:
@inproceedings{Forbriger2012a,
  author = {Forbriger, M. and Schittek, K.. and Höfle, B. and Siart, C. and Eitel, B.},
  title = {Multi-method investigation of cushion peatlands (bofedales) on the Peruvian Altiplano - high-resolution terrestrial archives for palaeoenvironmental reconstructions},
  booktitle = {Geophysical Research Abstracts},
  year = {2012},
  volume = {14},
  number = {EGU2012-11383},
  pages = {1--1}
}
[90] Hillen, F. & Höfle, B. (2012): Interoperable Web-based 3D Analysis of Laser Scanning Data for Location-based Mobile Applications. In: Proceedings of the Geoinformatik 2012. Braunschweig, Germany, pp. 399-402.
BibTeX:
@inproceedings{Hillen2012,
  author = {Hillen, Florian and Höfle, Bernhard},
  title = {Interoperable Web-based 3D Analysis of Laser Scanning Data for Location-based Mobile Applications},
  booktitle = {Proceedings of the Geoinformatik 2012},
  year = {2012},
  pages = {399--402}
}
[89] Höfle, B. (2012): Nachhaltige Stromerzeugung - Geoinformationen optimieren Solaranlagen. In: Ruperto Carola Forschungsmagazin. Vol. 1/2012, pp. 44-46.
BibTeX:
@inproceedings{Hoefle2012,
  author = {Höfle, B.},
  title = {Nachhaltige Stromerzeugung - Geoinformationen optimieren Solaranlagen},
  booktitle = {Ruperto Carola Forschungsmagazin},
  year = {2012},
  volume = {1/2012},
  pages = {44--46},
  url = {http://www.uni-heidelberg.de/presse/ruca/2012-1/08kurz.html}
}
[88] Höfle, B. (2012): Towards Digital Earth - 3D Spatial Data Infrastructures. Report No. 13022012, Scientific Report of Hengstberger Symposium 2011, 7-8 September, Heidelberg, pp. 1-30.
BibTeX:
@techreport{Hoefle2012a,
  author = {Höfle, B.},
  title = {Towards Digital Earth - 3D Spatial Data Infrastructures},
  year = {2012},
  number = {No. 13022012},
  pages = {1-30}
}
[87] Höfle, B., Forbriger, M., Siart, C. & Nowaczinski, E. (2012): Fusion of terrestrial LiDAR and tomographic mapping data for 3D karst landform investigation. In: Geophysical Research Abstracts. Vol. 14(EGU2012-6324-1), pp. 1-1.
BibTeX:
@inproceedings{Hoefle2012b,
  author = {Höfle, B. and Forbriger, M. and Siart, C. and Nowaczinski, E.},
  title = {Fusion of terrestrial LiDAR and tomographic mapping data for 3D karst landform investigation},
  booktitle = {Geophysical Research Abstracts},
  year = {2012},
  volume = {14},
  number = {EGU2012-6324-1},
  pages = {1--1}
}
[86] Höfle, B., Hollaus, M. & Hagenauer, J. (2012): Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data. ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 67 (0), pp. 134-147.
BibTeX:
@article{Hoefle2012c,
  author = {Höfle, Bernhard and Hollaus, Markus and Hagenauer, Julian},
  title = {Urban vegetation detection using radiometrically calibrated small-footprint full-waveform airborne LiDAR data},
  journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
  year = {2012},
  volume = {67},
  number = {0},
  pages = {134--147},
  url = {http://dx.doi.org/10.1016/j.isprsjprs.2011.12.003},
  doi = {http://dx.doi.org/10.1016/j.isprsjprs.2011.12.003}
}
[85] Höfle, B. & Jochem, A. (2012): 3D Laser Scanning Point Clouds and GIS - Current Developments (German title: 3D Laserscanning Punktwolken und GIS - Aktuelle Entwicklungen). gis.SCIENCE. Vol. 25 (2), pp. 91-100.
BibTeX:
@article{Hoefle2012d,
  author = {Höfle, Bernhard and Jochem, Andreas},
  title = {3D Laser Scanning Point Clouds and GIS - Current Developments (German title: 3D Laserscanning Punktwolken und GIS - Aktuelle Entwicklungen)},
  journal = {gis.SCIENCE},
  year = {2012},
  volume = {25},
  number = {2},
  pages = {91--100},
  url = {http://www.wichmann-verlag.de/gis-fachzeitschriften/artikelarchiv/2012/gisscience-ausgabe-022012/3d-laserscanning-punktwolken-und-gis-aktuelle-entwicklungen.html}
}
[84] Höfle, B. & Wagener, O. (2012): Burgen in der Landschaft - Inszenierung und Entzifferung anhand neuer Methoden. In: Wagener, O.: Symbole der Macht? Aspekte mittelalterlicher und frühneuzeitlicher Architektur, pp. 123-152. Peter Lang. ISBN: 978-3-631-63967-2
BibTeX:
@inbook{Hoefle2012e,
  author = {Höfle, B. and Wagener, O.},
  editor = {Wagener, O.}, 
  title = {Burgen in der Landschaft - Inszenierung und Entzifferung anhand neuer Methoden},
  booktitle = {Symbole der Macht? Aspekte mittelalterlicher und frühneuzeitlicher Architektur},
  publisher = {Peter Lang},
  year = {2012},
  pages = {123--152},
  url = {http://www.peterlang.com/?263967}
}
[83] Jochem, A., Höfle, B., Wichmann, V., Rutzinger, M. & Zipf, A. (2012): Area-wide roof plane segmentation in airborne LiDAR point clouds. Computers, Environment and Urban Systems. Vol. 36 (1), pp. 54-64.
BibTeX:
@article{Jochem2012,
  author = {Jochem, Andreas and Höfle, Bernhard and Wichmann, Volker and Rutzinger, Martin and Zipf, Alexander},
  title = {Area-wide roof plane segmentation in airborne LiDAR point clouds},
  journal = {Computers, Environment and Urban Systems},
  year = {2012},
  volume = {36},
  number = {1},
  pages = {54--64},
  url = {http://dx.doi.org/10.1016/j.compenvurbsys.2011.05.001},
  doi = {http://dx.doi.org/10.1016/j.compenvurbsys.2011.05.001}
}
[82] Koenig, K. & Höfle, B. (2012): Laser Scanning for 3D Object Characterization: Infrastructure for Exploration and Analysis of Vegetation Signatures. In: Geophysical Research Abstracts. Vol. 14(EGU2012-6411), pp. 1-1.
BibTeX:
@inproceedings{Koenig2012,
  author = {Koenig, K. and Höfle, B.},
  title = {Laser Scanning for 3D Object Characterization: Infrastructure for Exploration and Analysis of Vegetation Signatures},
  booktitle = {Geophysical Research Abstracts},
  year = {2012},
  volume = {14},
  number = {EGU2012-6411},
  pages = {1--1}
}
[81] Lilienthal, H., Richter, N., Jarmer, T., Siegmann, B., Selige, T. & Höfle, B. (2012): Simulation landwirtschaftlicher Online-Sensorik mit Hilfe abbildender Hyperspektraldaten. In: 18. Workshop Computer-Bildanalyse in der Landwirtschaft (=Bornimer Agrartechnische Berichte 78). Osnabrück, Germany, pp. 64-72.
BibTeX:
@inproceedings{Lilienthal2012,
  author = {Lilienthal, Holger and Richter, Nicole and Jarmer, Thomas and Siegmann, Bastian and Selige, Thomas and Höfle, Bernhard},
  title = {Simulation landwirtschaftlicher Online-Sensorik mit Hilfe abbildender Hyperspektraldaten},
  booktitle = {18. Workshop Computer-Bildanalyse in der Landwirtschaft (=Bornimer Agrartechnische Berichte 78)},
  year = {2012},
  pages = {64--72}
}
[80] Lilienthal, H., Richter, N., Siegmann, B., Jarmer, T., Selige, T. & Höfle, B. (2012): Erzeugung von Bilddaten aus bodengestützten hyperspektralen Feldmessungen. In: 32. Wissenschaftlich-Technische Jahrestagung der DGPF (DGPF-Tagungsband 21). Potsdam, Germany, pp. 323-330.
BibTeX:
@inproceedings{Lilienthal2012a,
  author = {Lilienthal, Holger and Richter, Nicole and Siegmann, Bastian and Jarmer, Thomas and Selige, Thomas and Höfle, Bernhard},
  title = {Erzeugung von Bilddaten aus bodengestützten hyperspektralen Feldmessungen},
  booktitle = {32. Wissenschaftlich-Technische Jahrestagung der DGPF (DGPF-Tagungsband 21)},
  year = {2012},
  pages = {323--330}
}
[79] Rutzinger, M., Höfle, B. & Kringer, K. (2012): Accuracy of automatically extracted geomorphological breaklines from airborne LiDAR curvature images. Geografiska Annaler: Series A. Vol. 94 (1), pp. 33-42. Blackwell Publishing Ltd.
BibTeX:
@article{Rutzinger2012,
  author = {Rutzinger, Martin and Höfle, Bernhard and Kringer, Korbinian},
  title = {Accuracy of automatically extracted geomorphological breaklines from airborne LiDAR curvature images},
  journal = {Geografiska Annaler: Series A},
  publisher = {Blackwell Publishing Ltd},
  year = {2012},
  volume = {94},
  number = {1},
  pages = {33--42},
  url = {http://dx.doi.org/10.1111/j.1468-0459.2012.00453.x},
  doi = {http://dx.doi.org/10.1111/j.1468-0459.2012.00453.x}
}
[78] Schütt, F. & Höfle, B. (2012): Validierung und Modellierung von Pflanzenparametern mit terrestrischen Laserscannerdaten. Report No. 092012, Institute of Geography, University of Heidelberg, pp. 1-10.
BibTeX:
@techreport{Schuett2012,
  author = {Schütt, F., and Höfle, B.},
  title = {Validierung und Modellierung von Pflanzenparametern mit terrestrischen Laserscannerdaten},
  year = {2012},
  number = {No. 092012},
  pages = {1--10}
}
[77] Siegmann, B., Jarmer, T., Lilienthal, H., Richter, N., Selige, T. & Höfle, B. (2012): Die Ableitung des Blattflächenindex von Weizenbeständen aus abbildenden Hyperspektraldaten. In: 32. Wissenschaftlich-Technische Jahrestagung der DGPF (DGPF-Tagungsband 21). Potsdam, Germany, pp. 339-346.
BibTeX:
@inproceedings{Siegmann2012,
  author = {Siegmann, Bastian and Jarmer, Thomas and Lilienthal, Holger and Richter, Nicole and Selige, Thomas and Höfle, Bernhard},
  title = {Die Ableitung des Blattflächenindex von Weizenbeständen aus abbildenden Hyperspektraldaten},
  booktitle = {32. Wissenschaftlich-Technische Jahrestagung der DGPF (DGPF-Tagungsband 21)},
  year = {2012},
  pages = {339--346}
}
[76] Siegmann, B., Jarmer, T., Lilienthal, H., Richter, N., Selige, T. & Höfle, B. (2012): Hyperspektraldaten zur Erfassung des Blattflächenindex von Weizenbeständen. In: Proceedings of the Geoinformatik 2012. Braunschweig, Germany, pp. 343-350.
BibTeX:
@inproceedings{Siegmann2012a,
  author = {Siegmann, Bastian and Jarmer, Thomas and Lilienthal, Holger and Richter, Nicole and Selige, Thomas and Höfle, Bernhard},
  title = {Hyperspektraldaten zur Erfassung des Blattflächenindex von Weizenbeständen},
  booktitle = {Proceedings of the Geoinformatik 2012},
  year = {2012},
  pages = {343--350}
}
[75] Siegmann, B., Jarmer, T., Selige, T., Lilienthal, H., Richter, N. & Höfle, B. (2012): Using hyperspectral remote sensing data for the assessment of topsoil organic carbon from agricultural soils. In: Proceedings of SPIE, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV. Vol. 8531, pp. 85312C.
BibTeX:
@inproceedings{Siegmann2012b,
  author = {Siegmann, B. and Jarmer, T. and Selige, T. and Lilienthal, H. and Richter, N. and Höfle, B.},
  title = {Using hyperspectral remote sensing data for the assessment of topsoil organic carbon from agricultural soils},
  booktitle = {Proceedings of SPIE, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIV},
  year = {2012},
  volume = {8531},
  pages = {85312C},
  doi = {http://dx.doi.org/10.1117/12.974509}
}


2011

top
[74] Auer, M., Höfle, B., Lanig, S., Schilling, A. & Zipf, A. (2011): 3D-Sutras: A web based atlas of laser scanned Buddhist stone inscriptions in China. In: Proceedings 14th AGILE International Conference on Geographic Information Science. Utrecht, The Netherlands, pp. digital media.
BibTeX:
@inproceedings{Auer2011,
  author = {Auer, Michael and Höfle, Bernhard and Lanig, Sandra and Schilling, Arne and Zipf, Alexander},
  title = {3D-Sutras: A web based atlas of laser scanned Buddhist stone inscriptions in China},
  booktitle = {Proceedings 14th AGILE International Conference on Geographic Information Science},
  year = {2011},
  pages = {digital media}
}
[73] Forbriger, M., Müller, L., Siart, C., Schittek, K., Höfle, B., Bubenzer, O., Reindel, M. & Eitel, B. (2011): Terrestrial laser scanning in geoarchaeology – capturing one of the oldest settlement places in the high Andes of southern Peru. In: Geophysical Research Abstracts. Vol. 13(EGU2011-12236), pp. 1-1.
BibTeX:
@inproceedings{Forbriger2011,
  author = {Forbriger, M. and Müller, L. and Siart, C. and Schittek, K. and Höfle, B. and Bubenzer, O. and Reindel, M. and Eitel, B.},
  title = {Terrestrial laser scanning in geoarchaeology – capturing one of the oldest settlement places in the high Andes of southern Peru},
  booktitle = {Geophysical Research Abstracts},
  year = {2011},
  volume = {13},
  number = {EGU2011-12236},
  pages = {1--1}
}
[72] Forbriger, M., Schittek, K., Siart, C. & Höfle, B. (2011): New approaches in vegetation mapping – use of terrestrial laser scanning on high Andean cushion peatlands. In: Geophysical Research Abstracts. Vol. 13(EGU2011-12268), pp. 1-1.
BibTeX:
@inproceedings{Forbriger2011a,
  author = {Forbriger, M. and Schittek, K.. and Siart, C. and Höfle, B.},
  title = {New approaches in vegetation mapping – use of terrestrial laser scanning on high Andean cushion peatlands},
  booktitle = {Geophysical Research Abstracts},
  year = {2011},
  volume = {13},
  number = {EGU2011-12268},
  pages = {1--1}
}
[71] Fritzmann, P., Höfle, B., Vetter, M., Sailer, R., Stötter, J. & Bollmann, E. (2011): Surface classification based on multi-temporal airborne LiDAR intensity data in high mountain environments. Zeitschrift für Geomorphologie. Vol. 55 (2), pp. 105-126.
BibTeX:
@article{Fritzmann2011,
  author = {Fritzmann, Patrick and Höfle, Bernhard and Vetter, Michael and Sailer, Rudolf and Stötter, Johann and Bollmann, Erik},
  title = {Surface classification based on multi-temporal airborne LiDAR intensity data in high mountain environments},
  journal = {Zeitschrift für Geomorphologie},
  year = {2011},
  volume = {55},
  number = {2},
  pages = {105--126},
  url = {http://dx.doi.org/10.1127/0372-8854/2011/0055S2-0048},
  doi = {http://dx.doi.org/10.1127/0372-8854/2011/0055S2-0048}
}
[70] Höfle, B., Pfeifer, N. & Zipf, A. (2011): Laser Scanning Spatial Data Infrastructure (LaSDI). Report EW10-085, Scientific Report of ESF Exploratory Workshop, 8-11 September, Heidelberg, pp. 1-18.
BibTeX:
@techreport{Hoefle2011,
  author = {Höfle, B. and Pfeifer, N. and Zipf, A.},
  title = {Laser Scanning Spatial Data Infrastructure (LaSDI)},
  year = {2011},
  number = {EW10-085},
  pages = {1-18}
}
[69] Höfle, B. & Rutzinger, M. (2011): Topographic airborne LiDAR in geomorphology: A technological perspective. Zeitschrift für Geomorphologie. Vol. 55 (2), pp. 1-29.
BibTeX:
@article{Hoefle2011a,
  author = {Höfle, Bernhard and Rutzinger, Martin},
  title = {Topographic airborne LiDAR in geomorphology: A technological perspective},
  journal = {Zeitschrift für Geomorphologie},
  year = {2011},
  volume = {55},
  number = {2},
  pages = {1--29},
  url = {http://dx.doi.org/10.1127/0372-8854/2011/0055S2-0043},
  doi = {http://dx.doi.org/10.1127/0372-8854/2011/0055S2-0043}
}
[68] Hollaus, M., Aubrecht, C., Höfle, B., Steinnocher, K. & Wagner, W. (2011): Roughness Mapping on Various Vertical Scales Based on Full-Waveform Airborne Laser Scanning Data. Remote Sensing. Vol. 3 (3), pp. 503-523.
BibTeX:
@article{Hollaus2011,
  author = {Hollaus, Markus and Aubrecht, Christoph and Höfle, Bernhard and Steinnocher, Klaus and Wagner, Wolfgang},
  title = {Roughness Mapping on Various Vertical Scales Based on Full-Waveform Airborne Laser Scanning Data},
  journal = {Remote Sensing},
  year = {2011},
  volume = {3},
  number = {3},
  pages = {503--523},
  url = {http://dx.doi.org/10.3390/rs3030503},
  doi = {http://dx.doi.org/10.3390/rs3030503}
}
[67] Jochem, A., Höfle, B. & Rutzinger, M. (2011): Extraction of Vertical Walls from Mobile Laser Scanning Data for Solar Potential Assessment. Remote Sensing. Vol. 3 (4), pp. 650-667.
BibTeX:
@article{Jochem2011,
  author = {Jochem, Andreas and Höfle, Bernhard and Rutzinger, Martin},
  title = {Extraction of Vertical Walls from Mobile Laser Scanning Data for Solar Potential Assessment},
  journal = {Remote Sensing},
  year = {2011},
  volume = {3},
  number = {4},
  pages = {650--667},
  url = {http://www.mdpi.com/2072-4292/3/4/650/},
  doi = {http://dx.doi.org/10.3390/rs3030650}
}
[66] Jochem, A., Hollaus, M., Rutzinger, M. & Höfle, B. (2011): Estimation of Aboveground Biomass in Alpine Forests: A Semi-Empirical Approach Considering Canopy Transparency Derived from Airborne LiDAR Data. Sensors. Vol. 11 (1), pp. 278-295.
BibTeX:
@article{Jochem2011a,
  author = {Jochem, Andreas and Hollaus, Markus and Rutzinger, Martin and Höfle, Bernhard},
  title = {Estimation of Aboveground Biomass in Alpine Forests: A Semi-Empirical Approach Considering Canopy Transparency Derived from Airborne LiDAR Data},
  journal = {Sensors},
  year = {2011},
  volume = {11},
  number = {1},
  pages = {278--295},
  url = {http://dx.doi.org/10.3390/s110100278},
  doi = {http://dx.doi.org/10.3390/s110100278}
}
[65] Lanig, S., Höfle, B., Auer, M., Schilling, A., Deierling, H. & Zipf, A. (2011): Geodateninfrastrukturen im historisch-geographischen Kontext – Buddhistische Steinschriften in der Provinz Sichuan/China. In: Strobl, J., Blaschke, T. & Griesebner, G.: Angewandte Geoinformatik 2011: Beiträge zum 23. AGIT-Symposium Salzburg, pp. 740-749. Wichmann. ISBN: 978-3-87907-508-9
BibTeX:
@inbook{Lanig2011,
  author = {Lanig, S., and Höfle, B., and Auer, M., and Schilling, A., and Deierling, H., and Zipf, A.},
  editor = {Strobl, J., and Blaschke, T., and Griesebner, G.}, 
  title = {Geodateninfrastrukturen im historisch-geographischen Kontext – Buddhistische Steinschriften in der Provinz Sichuan/China},
  booktitle = {Angewandte Geoinformatik 2011: Beiträge zum 23. AGIT-Symposium Salzburg},
  publisher = {Wichmann},
  year = {2011},
  pages = {740--749}
}
[64] Lanig, S., Schilling, A., Auer, M., Höfle, B., Billen, N. & Zipf, A. (2011): Interoperable integration of high precision 3D laser data and large scale geoanalysis in a SDI for Sutra inscriptions in Sichuan (China). In: Proceedings of the Geoinformatik 2011: Geochange (ifgiPrints 41). Münster, Germany, pp. 79-84.
BibTeX:
@inproceedings{Lanig2011a,
  author = {Lanig, Sandra and Schilling, Arne and Auer, Michael and Höfle, Bernhard and Billen, Nicolas and Zipf, Alexander},
  title = {Interoperable integration of high precision 3D laser data and large scale geoanalysis in a SDI for Sutra inscriptions in Sichuan (China)},
  booktitle = {Proceedings of the Geoinformatik 2011: Geochange (ifgiPrints 41)},
  year = {2011},
  pages = {79--84}
}
[63] Mandlburger, G., Otepka, J., Karel, W., Hollaus, M., Ressl, C., Haring, A., Briese, C., Molnar, G. & Höfle, B. (2011): OPALS - a comprehensive laser scanning software for geomorphological analysis. In: Geophysical Research Abstracts. Vol. 13(EGU2011-7933), pp. 1-1.
BibTeX:
@inproceedings{Mandlburger2011,
  author = {Mandlburger, G. and Otepka, J. and Karel, W. and Hollaus, M. and Ressl, C. and Haring, A. and Briese, C. and Molnar, G. and Höfle, B.},
  title = {OPALS - a comprehensive laser scanning software for geomorphological analysis},
  booktitle = {Geophysical Research Abstracts},
  year = {2011},
  volume = {13},
  number = {EGU2011-7933},
  pages = {1--1}
}
[62] Rutzinger, M., Höfle, B. & Kringer, K. (2011): Quality of geomorphological breaklines extracted from airborne laser scanning. In: Geophysical Research Abstracts. Vol. 13(EGU2011-8673), pp. 1-1.
BibTeX:
@inproceedings{Rutzinger2011,
  author = {Rutzinger, M. and Höfle, B. and Kringer, K.},
  title = {Quality of geomorphological breaklines extracted from airborne laser scanning},
  booktitle = {Geophysical Research Abstracts},
  year = {2011},
  volume = {13},
  number = {EGU2011-8673},
  pages = {1--1}
}
[61] Rutzinger, M., Höfle, B., Oude Elberink, S. & Vosselman, G. (2011): Feasibility of Facade Footprint Extraction from Mobile Laser Scanning Data. Photogrammetrie Fernerkundung Geoinformation (PFG). Vol. 2011 (3), pp. 97-107.
BibTeX:
@article{Rutzinger2011a,
  author = {Rutzinger, Martin and Höfle, Bernhard and Oude Elberink, Sander and Vosselman, George},
  title = {Feasibility of Facade Footprint Extraction from Mobile Laser Scanning Data},
  journal = {Photogrammetrie Fernerkundung Geoinformation (PFG)},
  year = {2011},
  volume = {2011},
  number = {3},
  pages = {97--107},
  url = {http://dx.doi.org/10.1127/1432-8364/2011/0075},
  doi = {http://dx.doi.org/10.1127/1432-8364/2011/0075}
}
[60] Rutzinger, M., Höfle, B., Vetter, M. & Pfeifer, N. (2011): Digital terrain models from airborne laser scanning for the automatic extraction of natural and anthropogenic linear structures. In: Smith, M., Paron, P. & Griffiths, J.: Geomorphological Mapping: Methods and Applications, pp. 475-488. Elsevier. ISBN: 978-0444534460
BibTeX:
@inbook{Rutzinger2011b,
  author = {Rutzinger, M. and Höfle, B. and Vetter, M. and Pfeifer, N.},
  editor = {Smith, M. and Paron, P. and Griffiths, J.S.}, 
  title = {Digital terrain models from airborne laser scanning for the automatic extraction of natural and anthropogenic linear structures},
  booktitle = {Geomorphological Mapping: Methods and Applications},
  publisher = {Elsevier},
  year = {2011},
  pages = {475--488},
  url = {http://www.sciencedirect.com/science/bookseries/09282025}
}
[59] Vetter, M., Höfle, B., Hollaus, M., Gschöpf, G., Mandlburger, G., Pfeifer, N. & Wagner, W. (2011): Vertical vegetation structure analysis and hydraulic roughness determination using dense ALS point cloud data - a voxel based approach. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVIII(Part 5/W12), pp. 1-6 (digital media).
BibTeX:
@inproceedings{Vetter2011,
  author = {Vetter, M. and Höfle, B. and Hollaus, M. and Gschöpf, G. and Mandlburger, G. and Pfeifer, N. and Wagner, W.},
  title = {Vertical vegetation structure analysis and hydraulic roughness determination using dense ALS point cloud data - a voxel based approach},
  booktitle = {International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2011},
  volume = {XXXVIII},
  number = {Part 5/W12},
  pages = {1-6 (digital media)}
}
[58] Vetter, M., Höfle, B., Mandlburger, G. & Rutzinger, M. (2011): Estimating changes of riverine landscapes and riverbeds by using airborne LiDAR data and river cross-sections. Zeitschrift für Geomorphologie. Vol. 55 (2), pp. 51-65.
BibTeX:
@article{Vetter2011a,
  author = {Vetter, Michael and Höfle, Bernhard and Mandlburger, Gottfried and Rutzinger, Martin},
  title = {Estimating changes of riverine landscapes and riverbeds by using airborne LiDAR data and river cross-sections},
  journal = {Zeitschrift für Geomorphologie},
  year = {2011},
  volume = {55},
  number = {2},
  pages = {51--65},
  url = {http://dx.doi.org/10.1127/0372-8854/2011/0055S2-0045},
  doi = {http://dx.doi.org/10.1127/0372-8854/2011/0055S2-0045}
}
[57] Vetter, M., Gschöpf, G., Höfle, B., Hollaus, M., Mücke, W., Pfeifer, N., Blöschl, G. & Wagner, W. (2011): Manningś n determination using vertical vegetation structure based on dense airborne laser scanning data. In: Geophysical Research Abstracts. Vol. 13(EGU2011-10351), pp. 1-1.
BibTeX:
@inproceedings{,
  author = {Vetter, M. and Gschöpf, G. and and Höfle, B. and Hollaus, M. and Mücke, W. and Pfeifer, N. and Blöschl, G. and Wagner, W.},
  title = {Manningś n determination using vertical vegetation structure based on dense airborne laser scanning data},
  booktitle = {Geophysical Research Abstracts},
  year = {2011},
  volume = {13},
  number = {EGU2011-10351},
  pages = {1--1}
}


2010

top
[56] Aubrecht, C., Höfle, B., Hollaus, M., Köstl, M., Steinnocher, K. & Wagner, W. (2010): Vertical roughness mapping - ALS based classification of the vertical vegetation structure in forested areas. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVIII(Part 7B), pp. 35-40.
BibTeX:
@inproceedings{Aubrecht2010,
  author = {Aubrecht, C. and Höfle, B. and Hollaus, M. and Köstl, M. and Steinnocher, K. and Wagner, W.},
  title = {Vertical roughness mapping - ALS based classification of the vertical vegetation structure in forested areas},
  booktitle = {International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2010},
  volume = {XXXVIII},
  number = {Part 7B},
  pages = {35--40}
}
[55] Höfle, B. & Hollaus, M. (2010): Roughness Parameterization Using Full-Waveform Airborne LiDAR Data. In: Geophysical Research Abstracts. Vol. 12(EGU2010-2528), pp. 1-1.
BibTeX:
@inproceedings{Hoefle2010,
  author = {Höfle, B. and Hollaus, M.},
  title = {Roughness Parameterization Using Full-Waveform Airborne LiDAR Data},
  booktitle = {Geophysical Research Abstracts},
  year = {2010},
  volume = {12},
  number = {EGU2010-2528},
  pages = {1--1}
}
[54] Höfle, B. & Hollaus, M. (2010): Urban vegetation detection using high density full-waveform airborne LiDAR data - Combination of object-based image and point cloud analysis. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVIII(Part 7B), pp. 281-286.
BibTeX:
@inproceedings{Hoefle2010a,
  author = {Höfle, B. and Hollaus, M.},
  title = {Urban vegetation detection using high density full-waveform airborne LiDAR data - Combination of object-based image and point cloud analysis},
  booktitle = {International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2010},
  volume = {XXXVIII},
  number = {Part 7B},
  pages = {281--286}
}
[53] Hollaus, M. & Höfle, B. (2010): Terrain roughness parameters from full-waveform airborne LiDAR data. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVIII(Part 7B), pp. 287-292.
BibTeX:
@inproceedings{Hollaus2010,
  author = {Hollaus, M. and Höfle, B.},
  title = {Terrain roughness parameters from full-waveform airborne LiDAR data},
  booktitle = {International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2010},
  volume = {XXXVIII},
  number = {Part 7B},
  pages = {287--292}
}
[52] Jochem, A., Hollaus, M., Rutzinger, M., Höfle, B., Schadauer, K. & Maier, B. (2010): Estimation of aboveground biomass using airborne LiDAR data. In: Proceedings of Silvilaser 2010: the 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems. Freiburg, Germany, pp. digital media: 9 p.
BibTeX:
@inproceedings{Jochem2010,
  author = {Jochem, A., and Hollaus, M., and Rutzinger, M., and Höfle, B., and Schadauer, K., and Maier, B.},
  title = {Estimation of aboveground biomass using airborne LiDAR data},
  booktitle = {Proceedings of Silvilaser 2010: the 10th International Conference on LiDAR Applications for Assessing Forest Ecosystems},
  year = {2010},
  pages = {digital media: 9 p}
}
[51] Jochem, A., Wichmann, V. & Höfle, B. (2010): Large area point cloud based solar radiation modeling. In: Böhner, J., Conrad, O. & Hengl, T.: SAGA Third Degree. Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie, Vol. 21
BibTeX:
@inbook{Jochem2010a,
  author = {Jochem, A. and Wichmann, V. and Höfle, B.},
  editor = {Böhner, J. and Conrad, O. and Hengl, T.}, 
  title = {Large area point cloud based solar radiation modeling},
  booktitle = {SAGA Third Degree. Hamburger Beiträge zur Physischen Geographie und Landschaftsökologie},
  year = {2010},
  volume = {21}
}
[50] Mandlburger, G., Briese, C., Otepka, J., Höfle, B. & Pfeifer, N. (2010): Verwaltung landesweiter Full Waveform Airborne Laser Scanning Daten. In: Proceedings 3-Ländertagung 2010, D-A-CH conference, DGPF Tagungsband. Vol. 19, pp. 356-365.
BibTeX:
@inproceedings{Mandlburger2010,
  author = {Mandlburger, G. and Briese, C. and Otepka, J. and Höfle, B. and Pfeifer, N.},
  title = {Verwaltung landesweiter Full Waveform Airborne Laser Scanning Daten},
  booktitle = {Proceedings 3-Ländertagung 2010, D-A-CH conference, DGPF Tagungsband},
  year = {2010},
  volume = {19},
  pages = {356--365}
}
[49] Podobnikar, T., Székely, B., Hollaus, M., Roncat, A., Dorninger, P., Briese, C., Melzer, T., Pathe, C., Höfle, B. & Pfeifer, N. (2010): Vsestranska uporaba aero-laserskega skeniranja za ugotavljanje nevarnosti zaradi naravnih nesreč na območju Alp. In: Zorn, M., Komac, B., Pavšek, M. & Pagon, P.: Od razumevanja do upravljanja, pp. 125-137. ISBN: 978-961-254-185-9
BibTeX:
@inbook{Podobnikar2010,
  author = {Podobnikar, T. and Székely, B. and Hollaus, M. and Roncat, A. and Dorninger, P. and Briese, C. and Melzer, T. and Pathe, C. and Höfle, B. and Pfeifer, N.},
  editor = {Zorn, M. and Komac, B. and Pavšek, M. and Pagon, P.}, 
  title = {Vsestranska uporaba aero-laserskega skeniranja za ugotavljanje nevarnosti zaradi naravnih nesreč na območju Alp},
  booktitle = {Od razumevanja do upravljanja},
  year = {2010},
  pages = {125--137},
  url = {http://giam.zrc-sazu.si/sites/default/files/Naravne-nesrece-01.pdf}
}
[48] Rutzinger, M., Höfle, B., Vetter, M., Stötter, J. & Pfeifer, N. (2010): Classification of breaklines derived from airborne LiDAR data for geomorphological activity mapping. In: Geophysical Research Abstracts. Vol. 12(EGU2010-2246-2), pp. 1-1.
BibTeX:
@inproceedings{Rutzinger2010,
  author = {Rutzinger, M. and Höfle, B. and Vetter, M. and Stötter, J. and Pfeifer, N.},
  title = {Classification of breaklines derived from airborne LiDAR data for geomorphological activity mapping},
  booktitle = {Geophysical Research Abstracts},
  year = {2010},
  volume = {12},
  number = {EGU2010-2246-2},
  pages = {1--1}
}
[47] Rutzinger, M., Rüf, B., Höfle, B. & Vetter, M. (2010): Change detection of building footprints from airborne laser scanning acquired in short time intervals. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVIII(Part 7B), pp. 475-480.
BibTeX:
@inproceedings{Rutzinger2010a,
  author = {Rutzinger, M. and Rüf, B. and Höfle, B. and Vetter, M.},
  title = {Change detection of building footprints from airborne laser scanning acquired in short time intervals},
  booktitle = {International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2010},
  volume = {XXXVIII},
  number = {Part 7B},
  pages = {475--480}
}
[46] Vetter, M., Höfle, B., Mandlburger, G. & Rutzinger, M. (2010): Change detection of riverbed movements using river cross-sections and LiDAR data. In: Geophysical Research Abstracts. Vol. 12(EGU2010-8169), pp. 1-1.
BibTeX:
@inproceedings{Vetter2010,
  author = {Vetter, M. and Höfle, B. and Mandlburger, G. and Rutzinger, M.},
  title = {Change detection of riverbed movements using river cross-sections and LiDAR data},
  booktitle = {Geophysical Research Abstracts},
  year = {2010},
  volume = {12},
  number = {EGU2010-8169},
  pages = {1--1}
}


2009

top
[45] Adams, M., Gangkofner, U., Stemberger, W., Doubkova, M., Höfle, B., Hollaus, M., Sabel, D., Aubrecht, C. & Steinnocher, K. (2009): SAR-X Environ: Environmental Mapping Applications using TerraSAR-X. Report No. 817082, Final report submitted to the FFG in the frame of the project SAR-X Environ financed by the Austrian Space Applications Programme, pp. 1-235.
BibTeX:
@techreport{Adams2009,
  author = {Adams, M., and Gangkofner, U., and Stemberger, W., and Doubkova, M., and Höfle, B., and Hollaus, M., and Sabel, D., and Aubrecht, C., and Steinnocher, K.},
  title = {SAR-X Environ: Environmental Mapping Applications using TerraSAR-X},
  year = {2009},
  number = {No. 817082},
  pages = {1--235}
}
[44] Bell, R., Höfle, B. & Chlaupek, A. (2009): Potential of Terrestrial and Airborne LiDAR in Geomorphology - A Geomorphological Perspective. In: Geophysical Research Abstracts. Vol. 11(EGU2009-6188), pp. 1-1.
BibTeX:
@inproceedings{Bell2009,
  author = {Bell, R., and Höfle, B., and Chlaupek, A.},
  title = {Potential of Terrestrial and Airborne LiDAR in Geomorphology - A Geomorphological Perspective},
  booktitle = {Geophysical Research Abstracts},
  year = {2009},
  volume = {11},
  number = {EGU2009-6188},
  pages = {1--1}
}
[43] Geist, T., Höfle, B., Rutzinger, M., Pfeifer, N. & Stötter, J. (2009): Laser Scanning - a paradigm change in topographic data acquisition for natural hazard management. In: Veulliet, E., Stötter, J. & Weck-Hannemann, H.: Sustainable Natural Hazard Management in Alpine Environments, pp. 309-344. Springer. ISBN: 978-3-642-03228-8
BibTeX:
@inbook{Geist2009,
  author = {Geist, T. and Höfle, B. and Rutzinger, M. and Pfeifer, N. and Stötter, J.},
  editor = {Veulliet, E. and Stötter, J. and Weck-Hannemann, H.}, 
  title = {Laser Scanning - a paradigm change in topographic data acquisition for natural hazard management},
  booktitle = {Sustainable Natural Hazard Management in Alpine Environments},
  publisher = {Springer},
  year = {2009},
  pages = {309--344},
  url = {http://www.springer.com/earth+sciences/book/978-3-642-03228-8}
}
[42] Höfle, B., Mücke, W., Dutter, M., Rutzinger, M. & Dorninger, P. (2009): Detection of building regions using airborne LiDAR - A new combination of raster and point cloud based GIS methods. In: Car, A., Griesebner, G. & Strobl, J.: Geospatial Crossroads @ GI_Forum '09: Proceedings of the Geoinformatics Forum Salzburg, pp. 66-75. Wichmann. ISBN: 978-3-87907-465-5
BibTeX:
@inbook{Hoefle2009,
  author = {Höfle, B. and Mücke, W. and Dutter, M. and Rutzinger, M. and Dorninger, P.},
  editor = {Car, A. and Griesebner, G. and Strobl, J.}, 
  title = {Detection of building regions using airborne LiDAR - A new combination of raster and point cloud based GIS methods},
  booktitle = {Geospatial Crossroads @ GI_Forum '09: Proceedings of the Geoinformatics Forum Salzburg},
  publisher = {Wichmann},
  year = {2009},
  pages = {66--75}
}
[41] Höfle, B., Mandlburger, G., Pfeifer, N., Rutzinger, M. & Bell, R. (2009): Potential of Airborne LiDAR in Geomorphology - A Technological Perspective. In: Geophysical Research Abstracts. Vol. 11(EGU2009-4630), pp. 1-1.
BibTeX:
@inproceedings{Hoefle2009a,
  author = {Höfle, B., and Mandlburger, G., and Pfeifer, N., and Rutzinger, M., and Bell, R.},
  title = {Potential of Airborne LiDAR in Geomorphology - A Technological Perspective},
  booktitle = {Geophysical Research Abstracts},
  year = {2009},
  volume = {11},
  number = {EGU2009-4630},
  pages = {1--1}
}
[40] Höfle, B., Sailer, R., Vetter, M., Rutzinger, M. & Pfeifer, N. (2009): Glacier surface feature detection and classification from airborne LiDAR data. In: Geophysical Research Abstracts. Vol. 11(EGU2009-4665), pp. 1-1.
BibTeX:
@inproceedings{Hoefle2009b,
  author = {Höfle, B. and Sailer, R. and Vetter, M. and Rutzinger, M. and Pfeifer, N.},
  title = {Glacier surface feature detection and classification from airborne LiDAR data},
  booktitle = {Geophysical Research Abstracts},
  year = {2009},
  volume = {11},
  number = {EGU2009-4665},
  pages = {1--1}
}
[39] Höfle, B., Vetter, M., Pfeifer, N., Mandlburger, G. & Stötter, J. (2009): Water surface mapping from airborne laser scanning using signal intensity and elevation data. Earth Surface Processes and Landforms. Vol. 34 (12), pp. 1635-1649. John Wiley & Sons, Ltd.
Abstract: In recent years airborne laser scanning (ALS) evolved into a state-of-the-art technology for topographic data acquisition. We present a novel, automatic method for water surface classification and delineation by combining the geometrical and signal intensity information provided by ALS. The reflection characteristics of water surfaces in the near-infrared wavelength (1064 nm) of the ALS system along with the surface roughness information provide the basis for the differentiation between water and land areas. Water areas are characterized by a high number of laser shot dropouts and predominant low backscatter energy. In a preprocessing step, the recorded intensities are corrected for spherical loss and atmospheric attenuation, and the locations of laser shot dropouts are modeled. A seeded region growing segmentation, applied to the point cloud and the modeled dropouts, is used to detect potential water regions. Object-based classification of the resulting segments determines the final separation of water and non-water points. The water-land-boundary is defined by the central contour line of the transition zone between water and land points. We demonstrate that the proposed workflow succeeds for a regulated river (Inn, Austria) with smooth water surface as well as for a pro-glacial braided river (Hintereisfernerbach, Austria). A multi-temporal analysis over five years of the pro-glacial river channel emphasizes the applicability of the developed method for different ALS systems and acquisition settings (e.g. point density). The validation, based on real time kinematic (RTK) global positioning system (GPS) field survey and a terrestrial orthophoto, indicate point cloud classification accuracy above 97% with 0·45 m planimetric accuracy (root mean square error) of the water-land boundary. This article shows the capability of ALS data for water surface mapping with a high degree of automation and accuracy. This provides valuable datasets for a number of applications in geomorphology, hydrology and hydraulics, such as monitoring of braided rivers, flood modeling and mapping.
BibTeX:
@article{Hoefle2009c,
  author = {Höfle, B. and Vetter, M. and Pfeifer, N. and Mandlburger, G. and Stötter, J.},
  title = {Water surface mapping from airborne laser scanning using signal intensity and elevation data},
  journal = {Earth Surface Processes and Landforms},
  publisher = {John Wiley & Sons, Ltd},
  year = {2009},
  volume = {34},
  number = {12},
  pages = {1635--1649},
  url = {http://dx.doi.org/10.1002/esp.1853},
  doi = {http://dx.doi.org/10.1002/esp.1853}
}
[38] Hollaus, M., Dorigo, W., Wagner, W., Schadauer, K., Höfle, B. & Maier, B. (2009): Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data. International Journal of Remote Sensing. Vol. 30 (19), pp. 5159-5175. Taylor & Francis.
Abstract: This paper evaluates the performance of a recently developed approach for wide-area stem volume estimations based on airborne laser scanning (ALS) and national forest inventory (NFI) data in the case where data recorded under operational conditions are used as input. This entails that neither ALS data nor NFI samples were collected and optimized for the current study. The approach was tested for the Austrian state of Vorarlberg, which covers an area of 2601 km2 and encloses about 970 km2 of forest land. ALS data with point densities varying between 1 and 4 points m-2 were acquired in the framework of a commercial state-wide terrain mapping project during several winter- and summer-flight campaigns. The stem volume model was calibrated with all NFI data available for Vorarlberg, whereas additional local forest inventory data were used for independent validation. Moreover, several relevant operational issues were addressed in this study, such as the determination of the optimum area used to calculate the reference laser metrics input to the model, the effect of gridding point cloud data to speed up processing, and the stratification of input data into coniferous and deciduous sample plots. Without tree species stratification and based on the 3D laser heights model, calibration provided a maximum R2 of 0.79 and a standard deviation (SD) of residuals derived from cross-validation of 107.4 m3 ha-1 (31.5. Calibrating the model only with coniferous samples increased the achieved R2 to 0.81 and decreased SD to 104.8 m3 ha-1 (29.7. As only eight NFI sample plots were available for deciduous forest a robust calibration of a separate model could not be obtained. Calibrating the model with a rasterized canopy height model (CHM) instead of using the 3D laser heights just led to a slight decrease in accuracy (R2 = 0.75, SD = 120.9 m3 ha-1 (35.5 without forest-type stratification and R2 = 0.78 and SD = 117.2 m3 ha-1 (33.1 for the coniferous stem volume model). Finally, the stem volume model calibrated with CHM data was adopted to generate a stem volume map of the entire State of Vorarlberg. Validation of this map with the additional local forest inventory data confirmed the accuracies (R2 = 0.75; SD = 135.6 m3 ha-1 (32.3) that were derived during calibration of the stem volume model based on the NFI data. The models and methods presented in this study are used operationally for forest and environment policy purposes and practical applications in Austria.
BibTeX:
@article{Hollaus2009,
  author = {Hollaus, M. and Dorigo, W. and Wagner, W. and Schadauer, K. and Höfle, B. and Maier, B.},
  title = {Operational wide-area stem volume estimation based on airborne laser scanning and national forest inventory data},
  journal = {International Journal of Remote Sensing},
  publisher = {Taylor & Francis},
  year = {2009},
  volume = {30},
  number = {19},
  pages = {5159--5175},
  url = {http://dx.doi.org/10.1080/01431160903022894},
  doi = {http://dx.doi.org/10.1080/01431160903022894}
}
[37] Hollaus, M., Mücke, W., Höfle, B., Dorigo, W., Pfeifer, N., Wagner, W., Bauerhansl, C. & Regner, B. (2009): Tree species classification based on full-waveform airborne laser scanning data. In: Proceedings of Silvilaser 2009. College Station, Texas, pp. 54-62. ISBN: 978-1-61623-997-8
Abstract: Airborne laser scanning is an evolving operational measurement technique for deriving forest parameters. The objective of the current study was to analyze the potential of full-waveform airborne laser scanning for tree species classification of a mixed woodland. The quantities used were the echo width, backscatter cross section, as well as the distribution of the echoes in vertical direction. Based on segmented tree crowns the mean backscatter cross section of all echoes above the 50th height percentile was computed. Additionally, the canopy density, describing the ratio of the number of all echoes above the 50th height percentile and the total number of echoes, was used for a knowledge-based classification of coniferous and deciduous trees. The achieved overall accuracy was 83%. Furthermore, the standard deviation of the echo widths per crown segment was applied for a separation of spruce and larch. An overall accuracy of the classified tree species red beech, larch and spruce of 75% was obtained. The presented results show that combining geometric information and backscattering properties of full-waveform airborne laser scanning data has a high potential for tree species classification.
BibTeX:
@inproceedings{Hollaus2009a,
  author = {Hollaus, M., and Mücke, W., and Höfle, B., and Dorigo, W., and Pfeifer, N., and Wagner, W., and Bauerhansl, C., and Regner, B.},
  title = {Tree species classification based on full-waveform airborne laser scanning data},
  booktitle = {Proceedings of Silvilaser 2009},
  year = {2009},
  pages = {54--62}
}
[36] Jochem, A., Höfle, B., Hollaus, M. & Rutzinger, M. (2009): Object detection in airborne LIDAR data for improved solar radiation modeling in urban areas. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVIII(Part 3/W8), pp. 1-6.
Abstract: In times of higher market prices of fossil fuels and to meet the increasingly environmental and economic threads of climate change renewable energy must play a major role for global energy supply. This paper focuses on a new method for fully automated solar potential assessment of roof planes from airborne LiDAR data and uses the full 3D information for both, roof plane detection and solar potential analysis. An image based candidate region detection algorithm reduces the data volume of the point cloud and identifies potential areas containing buildings with high completeness (97%). Three dimensional roof planes are extracted from the building candidate regions and their aspect and slope are calculated. The horizon of each roof plane is calculated within the 3D point cloud and thus shadowing effects of nearby objects such as vegetation, roofs, chimneys, dormers etc. are respected in a proper way. In contrast to other objects such as walls or buildings vegetation is characterized by transparent properties. Thus, in a further step vegetation is detected within the remaining non-roof points and transparent shadow values are introduced by calculating a local transparency measure averaged per tree segment. The following solar potential analysis is performed for regularly distributed roof points and results in both, (i) the annual sum of the direct and diffuse radiation for each roof plane and (ii) in a detailed information about the distribution of radiation within one roof. By calculating a clear sky index, cloud cover effects are considered using data from a nearby meteorological ground station.
BibTeX:
@inproceedings{Jochem2009,
  author = {Jochem, A. and Höfle, B. and Hollaus, M. and Rutzinger,M.},
  title = {Object detection in airborne LIDAR data for improved solar radiation modeling in urban areas},
  booktitle = {International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2009},
  volume = {XXXVIII},
  number = {Part 3/W8},
  pages = {1--6}
}
[35] Jochem, A., Höfle, B., Rutzinger, M. & Pfeifer, N. (2009): Automatic roof plane detection and analysis in airborne LIDAR point clouds for solar potential assessment. Sensors. Vol. 9 (7), pp. 5241-5262. MDPI Publishing.
Abstract: A relative height threshold is defined to separate potential roof points from the point cloud, followed by a segmentation of these points into homogeneous areas fulfilling the defined constraints of roof planes. The normal vector of each laser point is an excellent feature to decompose the point cloud into segments describing planar patches. An objectbased error assessment is performed to determine the accuracy of the presented classification. It results in 94.4% completeness and 88.4% correctness. Once all roof planes are detected in the 3D point cloud, solar potential analysis is performed for each point. Shadowing effects of nearby objects are taken into account by calculating the horizon of each point within the point cloud. Effects of cloud cover are also considered by using data from a nearby meteorological station. As a result the annual sum of the direct and diffuse radiation for each roof plane is derived. The presented method uses the full 3D information for both feature extraction and solar potential analysis, which offers a number of new applications in fields where natural processes are influenced by the incoming solar radiation (e.g., evapotranspiration, distribution of permafrost). The presented method detected fully automatically a subset of 809 out of 1,071 roof planes where the arithmetic mean of the annual incoming solar radiation is more than 700 kWh/m2.
BibTeX:
@article{Jochem2009a,
  author = {Jochem, A. and Höfle, B. and Rutzinger, M. and Pfeifer, N.},
  title = {Automatic roof plane detection and analysis in airborne LIDAR point clouds for solar potential assessment},
  journal = {Sensors},
  publisher = {MDPI Publishing},
  year = {2009},
  volume = {9},
  number = {7},
  pages = {5241--5262},
  doi = {http://dx.doi.org/10.3390/s90705241}
}
[34] Mandlburger, G., Höfle, B., Briese, C., Ressl, C., Otepka, J., Hollaus, M. & Pfeifer, N. (2009): Topographische Daten aus Laserscanning als Grundlage für Hydrologie und Wasserwirtschaft. Österreichische Wasser- und Abfallwirtschaft. Vol. 61 (7-8), pp. 89-97. Springer.
Abstract: Over the past 15 years, airborne laser scanning (ALS) has revolutionised topographical surveying by affording an unprecedented data density of several points per square metre as well as an accuracy of levels better than 150 mm. Topographical records from laser scanning as a precise basis of geometrical data have become an indispensable tool in danger-zone planning, flood-plain mapping and questions of water biology. This article outlines the range of applications of ALS data in the practice of water resources management. A first part describes the construction of a detailed topographical model of a water-course. The process chain begins with quality control, followed by the derivation of terrain edges of hydraulic relevance, classification of the ALS point cloud as water, ground and non-ground points as well as interpolation of high-quality digital terrain models (DTM). Also of interest are building and vegetation layers for follow-up uses. Part two deals with the preparation of ALS-based topographical data for the purpose of hydrological or hydraulic modelling. This involves the need for high-quality thinning of the DTM data, typically reaching reduction rates of up to 99 to permit successful use in subsequent simulations. The article winds up by describing a geometrical approach to the generation of computational grids.
BibTeX:
@article{Mandlburger2009,
  author = {Mandlburger, G. and Höfle, B. and Briese, C. and Ressl, C. and Otepka, J. and Hollaus, M. and Pfeifer, N.},
  title = {Topographische Daten aus Laserscanning als Grundlage für Hydrologie und Wasserwirtschaft},
  journal = {Österreichische Wasser- und Abfallwirtschaft},
  publisher = {Springer},
  year = {2009},
  volume = {61},
  number = {7--8},
  pages = {89--97},
  url = {http://dx.doi.org/10.1007/s00506-009-0095-3},
  doi = {http://dx.doi.org/10.1007/s00506-009-0095-3}
}
[33] Mandlburger, G., Hauer, C., Höfle, B., Habersack, H. & Pfeifer, N. (2009): Optimisation of LiDAR derived terrain models for river flow modelling. Hydrology and Earth System Sciences (HESS). Vol. 13 (8), pp. 1453-1466. Copernicus Publications.
Abstract: Airborne LiDAR (Light Detection And Ranging) combines cost efficiency, high degree of automation, high point density of typically 1–10 points per m2 and height accuracy of better than ±15 cm. For all these reasons LiDAR is particularly suitable for deriving precise Digital Terrain Models (DTM) as geometric basis for hydrodynamic-numerical (HN) simulations. The application of LiDAR for river flow modelling requires a series of preprocessing steps. Terrain points have to be filtered and merged with river bed data, e.g. from echo sounding. Then, a smooth Digital Terrain Model of the Watercourse (DTM-W) needs to be derived, preferably considering the random measurement error during surface interpolation. In a subsequent step, a hydraulic computation mesh has to be constructed. Hydraulic simulation software is often restricted to a limited number of nodes and elements, thus, data reduction and data conditioning of the high resolution LiDAR DTM-W becomes necessary. We will present a DTM thinning approach based on adaptive TIN refinement which allows a very effective compression of the point data (more than 95% in flood plains and up to 90% in steep areas) while preserving the most relevant topographic features (height tolerance ±20 cm). Traditional hydraulic mesh generators focus primarily on physical aspects of the computation grid like aspect ratio, expansion ratio and angle criterion. They often neglect the detailed shape of the topography as provided by LiDAR data. In contrast, our approach considers both the high geometric resolution of the LiDAR data and additional mesh quality parameters. It will be shown that the modelling results (flood extents, flow velocities, etc.) can vary remarkably by the availability of surface details. Thus, the inclusion of such geometric details in the hydraulic computation meshes is gaining importance in river flow modelling.
BibTeX:
@article{Mandlburger2009a,
  author = {Mandlburger, G. and Hauer, C. and Höfle, B. and Habersack, H. and Pfeifer, N.},
  title = {Optimisation of LiDAR derived terrain models for river flow modelling},
  journal = {Hydrology and Earth System Sciences (HESS)},
  publisher = {Copernicus Publications},
  year = {2009},
  volume = {13},
  number = {8},
  pages = {1453--1466},
  url = {http://www.hydrol-earth-syst-sci.net/13/1453/2009/}
}
[32] Pfeifer, N., Briese, C., Mandlburger, G., Höfle, B. & Ressl, C. (2009): State of the art in high accuracy high detail DTMs derived from ALS. In: Geophysical Research Abstracts. Vol. 11(EGU2009-4540), pp. 1-1.
BibTeX:
@inproceedings{Pfeifer2009,
  author = {Pfeifer, N., and Briese, C., and Mandlburger, G., and Höfle, B., and Ressl, C.},
  title = {State of the art in high accuracy high detail DTMs derived from ALS},
  booktitle = {Geophysical Research Abstracts},
  year = {2009},
  volume = {11},
  number = {EGU2009-4540},
  pages = {1--1}
}
[31] Pfeifer, N., Höfle, B., Hollaus, M. & Mücke, W. (2009): Aktueller Stand und Potenzial von Full-waveform Laserscanning in der Geomorphologie. In: Deutscher Geographentag 2009 - Fachsitzung 62: Möglichkeiten und Grenzen von Laserscanning in der Geomorphologie. Vienna, Austria, pp. 1-1.
BibTeX:
@inproceedings{Pfeifer2009a,
  author = {Pfeifer, N., and Höfle, B., and Hollaus, M., and Mücke, W.},
  title = {Aktueller Stand und Potenzial von Full-waveform Laserscanning in der Geomorphologie},
  booktitle = {Deutscher Geographentag 2009 - Fachsitzung 62: Möglichkeiten und Grenzen von Laserscanning in der Geomorphologie},
  year = {2009},
  pages = {1--1}
}
[30] Sailer, R., Höfle, B., Bollman, E., Vetter, M., Stötter, J., Pfeifer, N., Rutzinger, M. & Geist, T. (2009): Multitemporal error analysis of LiDAR data for geomorphological feature detection. In: Geophysical Research Abstracts. Vol. 11(EGU2009-4799-2), pp. 1-1.
BibTeX:
@inproceedings{Sailer2009,
  author = {Sailer, R. and Höfle, B. and Bollman, E. and Vetter, M. and Stötter, J. and Pfeifer, N., and Rutzinger, M. and Geist, T.},
  title = {Multitemporal error analysis of LiDAR data for geomorphological feature detection},
  booktitle = {Geophysical Research Abstracts},
  year = {2009},
  volume = {11},
  number = {EGU2009-4799-2},
  pages = {1--1}
}
[29] Vetter, M., Höfle, B., Pfeifer, N., Rutzinger, M., Sailer, R., Stötter, J. & Geist, T. (2009): The Hintereisferner - eight years of experience in method development for glacier monitoring with airborne LiDAR. In: Geophysical Research Abstracts. Vol. 11(EGU2009-7405-3), pp. 1-1.
BibTeX:
@inproceedings{Vetter2009,
  author = {Vetter, M. and Höfle, B. and Pfeifer, N. and Rutzinger, M. and Sailer, R. and Stötter, J. and Geist, T.},
  title = {The Hintereisferner - eight years of experience in method development for glacier monitoring with airborne LiDAR},
  booktitle = {Geophysical Research Abstracts},
  year = {2009},
  volume = {11},
  number = {EGU2009-7405-3},
  pages = {1--1}
}
[28] Vetter, M., Höfle, B., Pfeifer, N., Rutzinger, M. & Stötter, J. (2009): On the use of airborne LiDAR for braided river monitoring and water surface delineation. In: Geophysical Research Abstract. Vol. 11(EGU2009-7524-2), pp. 1-1.
BibTeX:
@inproceedings{Vetter2009a,
  author = {Vetter, M. and Höfle, B. and Pfeifer, N. and Rutzinger, M. and Stötter, J.},
  title = {On the use of airborne LiDAR for braided river monitoring and water surface delineation},
  booktitle = {Geophysical Research Abstract},
  year = {2009},
  volume = {11},
  number = {EGU2009-7524-2},
  pages = {1--1}
}
[27] Vetter, M., Höfle, B. & Rutzinger, M. (2009): Water classification using 3D airborne laser scanning point clouds. Österreichische Zeitschrift für Vermessung und Geoinformation (VGI). Vol. 97 (2), pp. 227-238.
BibTeX:
@article{Vetter2009b,
  author = {Vetter, M. and Höfle, B. and Rutzinger, M.},
  title = {Water classification using 3D airborne laser scanning point clouds},
  journal = {Österreichische Zeitschrift für Vermessung und Geoinformation (VGI)},
  year = {2009},
  volume = {97},
  number = {2},
  pages = {227--238},
  url = {http://www.ovg.at/index.php?id=3}
}
[26] Wagner, W., Hollaus, M. & Höfle, B. (2009): Terrain characterization and vegetation structural analysis with full-waveform airborne laser scanners. In: Proceedings of Remote Sensing and Photogrammetry Society Annual Conference 2009. Leicester, United Kingdom, pp. 208-213.
BibTeX:
@inproceedings{Wagner2009,
  author = {Wagner, W., and Hollaus, M., and Höfle, B.},
  title = {Terrain characterization and vegetation structural analysis with full-waveform airborne laser scanners},
  booktitle = {Proceedings of Remote Sensing and Photogrammetry Society Annual Conference 2009},
  year = {2009},
  pages = {208--213}
}


2008

top
[25] Briese, C., Höfle, B. & Lehner, H. (2008): Airborne Laser Scanning Denmark - Assessment of Data and DTM Quality. Report, Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, pp. 1-30.
BibTeX:
@techreport{Briese2008,
  author = {Briese, C., and Höfle, B., and Lehner, H.},
  title = {Airborne Laser Scanning Denmark - Assessment of Data and DTM Quality},
  year = {2008},
  pages = {1--30}
}
[24] Briese, C., Höfle, B., Lehner, H., Wagner, W., Pfennigbauer, M. & Ullrich, A. (2008): Calibration of Full-Waveform Airborne Laser Scanning Data for Object Classification. In: Proceedings of SPIE. Vol. 6950(Paper 6950-19), pp. 69500H1-69500H8.
BibTeX:
@inproceedings{Briese2008a,
  author = {Briese, C., and Höfle, B., and Lehner, H., and Wagner, W., and Pfennigbauer, M., and Ullrich, A.},
  title = {Calibration of Full-Waveform Airborne Laser Scanning Data for Object Classification},
  booktitle = {Proceedings of SPIE},
  year = {2008},
  volume = {6950},
  number = {Paper 6950-19},
  pages = {69500H1--69500H8},
  url = {http://link.aip.org/link/?PSISDG/6950/69500H/1}
}
[23] Höfle, B., Hollaus, M., Lehner, H., Pfeifer, N. & Wagner, W. (2008): Area-based parameterization of forest structure using full-waveform airborne laser scanning data. In: Proceedings of Silvilaser 2008. Edinburgh, Scotland, pp. 227-235 (on CD-ROM).
BibTeX:
@inproceedings{Hoefle2008,
  author = {Höfle, B., and Hollaus, M., and Lehner, H., and Pfeifer, N., and Wagner, W.},
  title = {Area-based parameterization of forest structure using full-waveform airborne laser scanning data},
  booktitle = {Proceedings of Silvilaser 2008},
  year = {2008},
  pages = {227--235 (on CD-ROM)}
}
[22] Höfle, B., Hollaus, M., Pfeifer, N. & Wagner, W. (2008): Vegetationsuntersuchungen mittels full-waveform Laserscanning-Daten. Report, Institute of Photogrammetry and Remote Sensing, Vienna University of Technology, pp. 1-59.
BibTeX:
@techreport{Hoefle2008a,
  author = {Höfle, B., and Hollaus, M., and Pfeifer, N., and Wagner, W.},
  title = {Vegetationsuntersuchungen mittels full-waveform Laserscanning-Daten},
  year = {2008},
  pages = {1--59}
}
[21] Höfle, B., Pfeifer, N., Ressl, C., Rutzinger, M. & Vetter, M. (2008): Water surface mapping using airborne laser scanning elevation and signal amplitude data. In: Geophysical Research Abstracts. Vol. 10(EGU2008-A-06897), pp. 1-2.
BibTeX:
@inproceedings{Hoefle2008b,
  author = {Höfle, B. and Pfeifer, N. and Ressl, C. and Rutzinger, M. and Vetter, M.},
  title = {Water surface mapping using airborne laser scanning elevation and signal amplitude data},
  booktitle = {Geophysical Research Abstracts},
  year = {2008},
  volume = {10},
  number = {EGU2008-A-06897},
  pages = {1--2}
}
[20] Mandlburger, G., Hauer, C., Höfle, B., Habersack, H. & Pfeifer, N. (2008): Optimisation of LiDAR derived terrain models for river flow modelling. Hydrology and Earth System Sciences Discussions (HESSD). Vol. 5 (6), pp. 3605-3638. Copernicus Publications.
Abstract: Airborne LiDAR (Light Detection And Ranging) combines cost efficiency, high degree of automation, high point density of typically 1–10 points per m2 and height accuracy of better than ±15 cm. For all these reasons LiDAR is particularly suitable for deriving precise Digital Terrain Models (DTM) as geometric basis for hydrodynamic-numerical (HN) simulations. The application of LiDAR for river flow modelling requires a series of preprocessing steps. Terrain points have to be filtered and merged with river bed data, e.g. from echo sounding. Then, a smooth Digital Terrain Model of the Watercourse (DTM-W) needs to be derived, preferably considering the random measurement error during surface interpolation. In a subsequent step, a hydraulic computation mesh has to be constructed. Hydraulic simulation software is often restricted to a limited number of nodes and elements, thus, data reduction and data conditioning of the high resolution LiDAR DTM-W becomes necessary. We will present a DTM thinning approach based on adaptive TIN refinement which allows a very effective compression of the point data (more than 95% in flood plains and up to 90% in steep areas) while preserving the most relevant topographic features (height tolerance ±20 cm). Traditional hydraulic mesh generators focus primarily on physical aspects of the computation grid like aspect ratio, expansion ratio and angle criterion. They often neglect the detailed shape of the topography as provided by LiDAR data. In contrast, our approach considers both the high geometric resolution of the LiDAR data and additional mesh quality parameters. It will be shown that the modelling results (flood extents, flow velocities, etc.) can vary remarkably by the availability of surface details. Thus, the inclusion of such geometric details in the hydraulic computation meshes will gain importance for river flow modelling in the future.
BibTeX:
@article{Mandlburger2008,
  author = {Mandlburger, G. and Hauer, C. and Höfle, B. and Habersack, H. and Pfeifer, N.},
  title = {Optimisation of LiDAR derived terrain models for river flow modelling},
  journal = {Hydrology and Earth System Sciences Discussions (HESSD)},
  publisher = {Copernicus Publications},
  year = {2008},
  volume = {5},
  number = {6},
  pages = {3605--3638},
  url = {http://www.hydrol-earth-syst-sci-discuss.net/5/3605/2008/}
}
[19] Pfeifer, N., Höfle, B., Briese, C., Rutzinger, M. & Haring, A. (2008): Analysis of the backscattered energy in terrestrial laser scanning data. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII(Part B5), pp. 1045-1051.
Abstract: Terrestrial laser scanning provides a point cloud, but usually also the intensity values are available. These values are mainly influenced by the distance from sensor to object and by the object's reflection properties. We demonstrate that it is possible to retrieve these reflection properties from the observed range and the intensity value. An experiment with targets of known reflectivity behaviour is described. Retrieving object reflectivity is also demonstrated for these targets in another experiment, which was not used to determine the functional relationship between range, reflectivity, and intensity. The Lidar equation describes the received optical power in terms of the emitted power, range, and target properties. Nonetheless, the intensity values do not follow this prescribed behaviour. Therefore, data driven approaches are used, allowing a better prediction of the observed intensity from the range and reflectivity of the targets. For a Riegl LMS-Z420i and an Optech ILRIS 3D these experiments were performed. Both scanners measure range by the travel time of a pulse. In our experiments, the reflectivity can be estimated from the laser scanning data with a standard deviation of 6% or better. This demonstrates the potential for retrieving material properties of natural surfaces, too.
BibTeX:
@inproceedings{Pfeifer2008,
  author = {Pfeifer, N. and Höfle, B. and Briese, C. and Rutzinger, M. and Haring, A.},
  title = {Analysis of the backscattered energy in terrestrial laser scanning data},
  booktitle = {International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2008},
  volume = {XXXVII},
  number = {Part B5},
  pages = {1045--1051}
}
[18] Rutzinger, M., Höfle, B., Hollaus, M. & Pfeifer, N. (2008): Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification. Sensors. Vol. 8 (8), pp. 4505-4528. MDPI Publishing.
Abstract: Airborne laser scanning (ALS) is a remote sensing technique well-suited for 3D vegetation mapping and structure characterization because the emitted laser pulses are able to penetrate small gaps in the vegetation canopy. The backscattered echoes from the foliage, woody vegetation, the terrain, and other objects are detected, leading to a cloud of points. Higher echo densities (> 20 echoes/m2) and additional classification variables from full-waveform (FWF) ALS data, namely echo amplitude, echo width and information on multiple echoes from one shot, offer new possibilities in classifying the ALS point cloud. Currently FWF sensor information is hardly used for classification purposes. This contribution presents an object-based point cloud analysis (OBPA) approach, combining segmentation and classification of the 3D FWF ALS points designed to detect tall vegetation in urban environments. The definition tall vegetation includes trees and shrubs, but excludes grassland and herbage. In the applied procedure FWF ALS echoes are segmented by a seeded region growing procedure. All echoes sorted descending by their surface roughness are used as seed points. Segments are grown based on echo width homogeneity. Next, segment statistics (mean, standard deviation, and coefficient of variation) are calculated by aggregating echo features such as amplitude and surface roughness. For classification a rule base is derived automatically from a training area using a statistical classification tree. To demonstrate our method we present data of three sites with around 500,000 echoes each. The accuracy of the classified vegetation segments is evaluated for two independent validation sites. In a point-wise error assessment, where the classification is compared with manually classified 3D points, completeness and correctness better than 90% are reached for the validation sites. In comparison to many other algorithms the proposed 3D point classification works on the original measurements directly, i.e. the acquired points. Gridding of the data is not necessary, a process which is inherently coupled to loss of data and precision. The 3D properties provide especially a good separability of buildings and terrain points respectively, if they are occluded by vegetation.
BibTeX:
@article{Rutzinger2008,
  author = {Rutzinger, Martin and Höfle, Bernhard and Hollaus, Markus and Pfeifer, Norbert},
  title = {Object-Based Point Cloud Analysis of Full-Waveform Airborne Laser Scanning Data for Urban Vegetation Classification},
  journal = {Sensors},
  publisher = {MDPI Publishing},
  year = {2008},
  volume = {8},
  number = {8},
  pages = {4505--4528},
  url = {http://www.mdpi.com/1424-8220/8/8/4505},
  doi = {http://dx.doi.org/10.3390/s8084505}
}
[17] Rutzinger, M., Höfle, B. & Pfeifer, N. (2008): Object detection in airborne laser scanning data - an integrative approach on object-based image and point cloud analysis. In: Blaschke, T., Lang, S. & Hay, G.: Object-Based Image Analysis - Spatial concepts for knowledge-driven remote sensing applications, pp. 645-662. Springer. ISBN: 978-3-54077-057-2
Abstract: In recent years object-based image analysis of digital elevation models acquired by airborne laser scanning gained in importance. Various applications for land cover classification (e.g. building and tree detection) already show promising results. Additionally to elevation rasters the original airborne laser scanning point cloud contains highly detailed 3D information. This paper introduces an integrative approach combining object-based image analysis and object-based point cloud analysis. This integrative concept is applied to building detection in the raster domain followed by a 3D roof facet delineation and classification in the point cloud. The building detection algorithm consists of a segmentation task, which is based on a fill sinks algorithm applied to the inverted digital surface model, and a rule-based classification task. The 340 buildings of the test site could be derived with 85% user's accuracy and 92% producer's accuracy. For each building object the original laser points are further investigated by a 3D segmentation (region growing) searching for planar roof patches. The finally delineated roof facets and their descriptive attributes (e.g. slope, 3D area) represent a useful input for a multitude of applications, such as positioning of solar-thermal panels and photovoltaics or snow load capacity modeling.
BibTeX:
@inbook{Rutzinger2008a,
  author = {Rutzinger, M. and Höfle, B. and Pfeifer, N.},
  editor = {Blaschke, T. and Lang, S. and Hay, G.}, 
  title = {Object detection in airborne laser scanning data - an integrative approach on object-based image and point cloud analysis},
  booktitle = {Object-Based Image Analysis - Spatial concepts for knowledge-driven remote sensing applications},
  publisher = {Springer},
  year = {2008},
  pages = {645--662},
  url = {http://www.springerlink.com/content/j119948j604238x6/},
  doi = {http://dx.doi.org/10.1007/978-3-540-77058-9_35}
}
[16] Vetter, M., Höfle, B., Mandlburger, G. & Rutzinger, M. (2008): Ableitung von Flusssohlenmodellen aus Flussquerprofilen und Integration in Airborne Laserscanning Geländemodelle mit GRASS GIS. In: Strobl, J., Blaschke, T. & Griesebner, G.: Angewandte Geoinformatik 2008: Beiträge zum 20. AGIT-Symposium Salzburg, pp. 382-391. Wichmann. ISBN: 978-3-87907-464-8
BibTeX:
@inbook{Vetter2008,
  author = {Vetter, M. and Höfle, B. and Mandlburger, G. and Rutzinger, M.},
  editor = {Strobl, J. and Blaschke, T. and Griesebner, G.}, 
  title = {Ableitung von Flusssohlenmodellen aus Flussquerprofilen und Integration in Airborne Laserscanning Geländemodelle mit GRASS GIS},
  booktitle = {Angewandte Geoinformatik 2008: Beiträge zum 20. AGIT-Symposium Salzburg},
  publisher = {Wichmann},
  year = {2008},
  pages = {382--391}
}


2007

top
[15] Höfle, B. (2007): Detection and Utilization of the Information Potential of Airborne Laser Scanning Point Cloud and Intensity Data by Developing a Management and Analysis System. PhD Thesis, Faculty of Geo- and Atmospheric Sciences, University of Innsbruck, Austria, pp. 1-129.
BibTeX:
@phdthesis{Hoefle2007,
  author = {Höfle, Bernhard},
  title = {Detection and Utilization of the Information Potential of Airborne Laser Scanning Point Cloud and Intensity Data by Developing a Management and Analysis System},
  school = {Faculty of Geo- and Atmospheric Sciences, University of Innsbruck, Austria},
  year = {2007},
  pages = {1--129}
}
[14] Höfle, B., Geist, T., Rutzinger, M. & Pfeifer, N. (2007): Glacier surface segmentation using airborne laser scanning point cloud and intensity data. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVI(Part 3/W52), pp. 195-200 (on CD-ROM).
BibTeX:
@inproceedings{Hoefle2007a,
  author = {Höfle, B. and Geist, T. and Rutzinger, M. and Pfeifer, N.},
  title = {Glacier surface segmentation using airborne laser scanning point cloud and intensity data},
  booktitle = {International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2007},
  volume = {XXXVI},
  number = {Part 3/W52},
  pages = {195--200 (on CD-ROM)}
}
[13] Höfle, B. & Pfeifer, N. (2007): Correction of laser scanning intensity data: Data and model-driven approaches. ISPRS Journal of Photogrammetry and Remote Sensing. Vol. 62 (6), pp. 415-433.
Abstract: Most airborne and terrestrial laser scanning systems additionally record the received signal intensity for each measurement. Multiple studies show the potential of this intensity value for a great variety of applications (e.g. strip adjustment, forestry, glaciology), but also state problems if using the original recorded values. Three main factors, a) spherical loss, b) topographic and c) atmospheric effects, influence the backscatter of the emitted laser power, which leads to a noticeably heterogeneous representation of the received power. This paper describes two different methods for correcting the laser scanning intensity data for these known influences resulting in a value proportional to the reflectance of the scanned surface. The first approach - data-driven correction - uses predefined homogeneous areas to empirically estimate the best parameters (least-squares adjustment) for a given global correction function accounting for all range-dependent influences. The second approach - model-driven correction - corrects each intensity independently based on the physical principle of radar systems. The evaluation of both methods, based on homogeneous reflecting areas acquired at different heights in different missions, indicates a clear reduction of intensity variation, to 1/3.5 of the original variation, and offsets between flight strips to 1/10. The presented correction methods establish a great potential for laser scanning intensity to be used for surface classification and multi-temporal analyses.
BibTeX:
@article{Hoefle2007b,
  author = {Bernhard Höfle and Norbert Pfeifer},
  title = {Correction of laser scanning intensity data: Data and model-driven approaches},
  journal = {ISPRS Journal of Photogrammetry and Remote Sensing},
  year = {2007},
  volume = {62},
  number = {6},
  pages = {415--433},
  url = {http://dx.doi.org/10.1016/j.isprsjprs.2007.05.008},
  doi = {http://dx.doi.org/10.1016/j.isprsjprs.2007.05.008}
}
[12] Kodde, M., Pfeifer, N., Gorte, B., Geist, T. & Höfle, B. (2007): Automatic glacier surface analysis from airborne laser scanning. In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVI(Part 3/W52), pp. 221-226 (on CD-ROM).
BibTeX:
@inproceedings{Kodde2007,
  author = {Kodde, M.P., and Pfeifer, N., and Gorte, B.G.H., and Geist, T., and Höfle, B.},
  title = {Automatic glacier surface analysis from airborne laser scanning},
  booktitle = {International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2007},
  volume = {XXXVI},
  number = {Part 3/W52},
  pages = {221--226 (on CD-ROM)}
}
[11] Rutzinger, M., Höfle, B. & Pfeifer, N. (2007): Detection of high urban vegetation with airborne laser scanning data. In: Proceedings Forestsat 2007. Montpellier, France, pp. 1-5 (on CD-ROM).
BibTeX:
@inproceedings{Rutzinger2007,
  author = {Rutzinger, M. and Höfle, B. and Pfeifer, N.},
  title = {Detection of high urban vegetation with airborne laser scanning data},
  booktitle = {Proceedings Forestsat 2007},
  year = {2007},
  pages = {1--5 (on CD-ROM)}
}


2006

top
[10] Edelmaier, F., Höfle, B. & Heller, A. (2006): Konzepte zur 3D Visualisierung von Laserscanner-Daten mit VTK und Python. In: Strobl, J., Blaschke, T. & Griesebner, G.: Angewandte Geoinformatik 2006: Beiträge zum 18. AGIT-Symposium Salzburg, pp. 129-134. Wichmann. ISBN: 978-3-87907-437-2
BibTeX:
@inbook{Edelmaier2006,
  author = {Edelmaier, F., and Höfle, B., and Heller, A.},
  editor = {Strobl, J., and Blaschke, T., and Griesebner, G.}, 
  title = {Konzepte zur 3D Visualisierung von Laserscanner-Daten mit VTK und Python},
  booktitle = {Angewandte Geoinformatik 2006: Beiträge zum 18. AGIT-Symposium Salzburg},
  publisher = {Wichmann},
  year = {2006},
  pages = {129--134}
}
[9] Geist, T., Höfle, B., Kodde, M., Kodde, S., Karimi, F., Lindenbergh, R. & Pfeifer, N. (2006): Experimente am Hintereisferner mit dem terrestrischen Laserscanner Ilris 3D. Report, Institute of Geography, University of Innsbruck, pp. 1-9.
BibTeX:
@techreport{Geist2006,
  author = {Geist, T., and Höfle, B., and Kodde, M., and Kodde, S., and Karimi, F., and Lindenbergh, R., and Pfeifer, N.},
  title = {Experimente am Hintereisferner mit dem terrestrischen Laserscanner Ilris 3D},
  year = {2006},
  pages = {1--9}
}
[8] Höfle, B., Rutzinger, M., Geist, T. & Stötter, J. (2006): Using airborne laser scanning data in urban data management - set up of a flexible information system with open source components. In: Proceedings UDMS 2006: Urban Data Management Symposium. Aalborg, Denmark, pp. 7.11-7.23 (on CD-ROM).
BibTeX:
@inproceedings{Hoefle2006,
  author = {Höfle, B. and Rutzinger, M. and Geist, T. and Stötter, J.},
  title = {Using airborne laser scanning data in urban data management - set up of a flexible information system with open source components},
  booktitle = {Proceedings UDMS 2006: Urban Data Management Symposium},
  year = {2006},
  pages = {7.11--7.23 (on CD-ROM)}
}
[7] Höfle, B., Rutzinger, M. & Pfeifer, N. (2006): Terrestrial Laser Scanner Optech ILRIS 3D - Experiment on the angle of incidence and recorded intensity. Report, Institute of Geography, University of Innsbruck, pp. 1-7.
BibTeX:
@techreport{Hoefle2006a,
  author = {Höfle, B., and Rutzinger, M., and Pfeifer, N.},
  title = {Terrestrial Laser Scanner Optech ILRIS 3D - Experiment on the angle of incidence and recorded intensity},
  year = {2006},
  pages = {1--7}
}
[6] Rutzinger, M., Höfle, B., Geist, T. & Stötter, J. (2006): Object-based building detection based on airborne laser scanning data within GRASS GIS environment. In: Proceedings UDMS 2006: Urban Data Management Symposium. Aalborg, Denmark, pp. 7.37-7.48 (on CD-ROM).
BibTeX:
@inproceedings{Rutzinger2006,
  author = {Rutzinger, M. and Höfle, B. and Geist, T. and Stötter, J.},
  title = {Object-based building detection based on airborne laser scanning data within GRASS GIS environment},
  booktitle = {Proceedings UDMS 2006: Urban Data Management Symposium},
  year = {2006},
  pages = {7.37--7.48 (on CD-ROM)}
}
[5] Rutzinger, M., Höfle, B., Pfeifer, N., Geist, T. & Stötter, J. (2006): Object-based analysis of airborne laser scanning data for natural hazard purposes using open source components. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVI(Part 4/C42), pp. 1-5 (on CD-ROM).
BibTeX:
@inproceedings{Rutzinger2006a,
  author = {Rutzinger, M. and Höfle, B. and Pfeifer, N. and Geist, T. and Stötter, J.},
  title = {Object-based analysis of airborne laser scanning data for natural hazard purposes using open source components},
  booktitle = {International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2006},
  volume = {XXXVI},
  number = {Part 4/C42},
  pages = {1--5 (on CD-ROM)}
}


2005

top
[4] Geist, T., Höfle, B., Rutzinger, M. & Stötter, J. (2005): Der Einsatz von flugzeuggestützten Laserscanner Daten für geowissenschaftliche Untersuchungen in Gebirgsräumen. Photogrammetrie, Fernerkundung, Geoinformation (PFG). Vol. 2005 (3), pp. 183-190.
BibTeX:
@article{Geist2005,
  author = {Geist, T. and Höfle, B. and Rutzinger, M. and Stötter, J.},
  title = {Der Einsatz von flugzeuggestützten Laserscanner Daten für geowissenschaftliche Untersuchungen in Gebirgsräumen},
  journal = {Photogrammetrie, Fernerkundung, Geoinformation (PFG)},
  year = {2005},
  volume = {2005},
  number = {3},
  pages = {183--190},
  url = {http://www.dgpf.de/neu/pfg/2005/Heft_3.pdf}
}
[3] Höfle, B. (2005): Entwicklung eines Informationssystems für Laserscannerdaten mit open source Software. Master Thesis, Institute of Geography, University of Innsbruck, Austria, pp. 1-199.
BibTeX:
@mastersthesis{Hoefle2005,
  author = {Höfle, Bernhard},
  title = {Entwicklung eines Informationssystems für Laserscannerdaten mit open source Software},
  school = {Institute of Geography, University of Innsbruck, Austria},
  year = {2005},
  pages = {1--199}
}
[2] Höfle, B., Geist, T., Heller, A. & Stötter, J. (2005): Entwicklung eines Informationssystems für Laserscannerdaten mit OpenSource-Software. In: Strobl, J., Blaschke, T. & Griesebner, G.: Angewandte Geoinformatik 2005: Beiträge zum 17. AGIT-Symposium Salzburg, pp. 277-286. Wichmann. ISBN: 978-3-87907-422-8
BibTeX:
@inbook{Hoefle2005a,
  author = {Höfle, B., and Geist, T., and Heller, A., and Stötter, J.},
  editor = {Strobl, J., and Blaschke, T., and Griesebner, G.}, 
  title = {Entwicklung eines Informationssystems für Laserscannerdaten mit OpenSource-Software},
  booktitle = {Angewandte Geoinformatik 2005: Beiträge zum 17. AGIT-Symposium Salzburg},
  publisher = {Wichmann},
  year = {2005},
  pages = {277--286}
}


2004

top
[1] Geist, T., Höfle, B., Rutzinger, M. & Stötter, J. (2004): Analysis of laser scanner data with remote sensing techniques for determining surface characteristics. In: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVI(Part 8/W2), pp. 297-297.
BibTeX:
@inproceedings{Geist2004,
  author = {Geist, T. and Höfle, B. and Rutzinger, M. and Stötter, J.},
  title = {Analysis of laser scanner data with remote sensing techniques for determining surface characteristics},
  booktitle = {International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences},
  year = {2004},
  volume = {XXXVI},
  number = {Part 8/W2},
  pages = {297--297}
}

Created by JabRef on 15/09/2017 using own export layout


© 2016   Disclaimer